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ABSTRACT

Understanding Seasonal Climate Predictability

in the Atlantic Sector. (December 2003)

Marcelo Barreiro, B.S., Universidad de la República, Uruguay;

M.S., Universidad de la República, Uruguay

Chair of Advisory Committee: Dr. Ping Chang

This dissertation aims at understanding ocean-atmosphere interactions in the Atlantic

basin, and how this coupling may lead to increased climate predictability on seasonal-

to-interannual time scales. Two regions are studied: the South Atlantic convergence

zone (SACZ), and the tropical Atlantic.

We studied the SACZ during austral summer and separated its variability into

forced and internal components. This was done by applying a signal-to-noise opti-

mization procedure to an ensemble of integrations of the NCAR Community Climate

Model (CCM3) forced with observed Sea Surface Temperature (SST). The analysis

yielded two dominant responses: (1) a response to local Atlantic SST consisting of

a dipole-like structure in precipitation close to the coast of South America; (2) a re-

sponse to Pacific SST which manifests mainly in the upper-level circulation consisting

of a northeastward shift of the SACZ during El Niño events. The land portion of the

SACZ was found to be primarily dominated by internal variability, thereby having

limited potential predictability at seasonal time scales.

We studied two aspects of tropical Atlantic Variability (TAV). First, we investi-

gated the effect of extratropical variability on the gradient mode. We found that the

intensive Southern Hemisphere (SH) winter variability can play a pre-conditioning
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role in the onset of the interhemispheric anomalies in the deep tropics during boreal

spring. This SH influence on TAV is contrasted with its northern counterpart that

primarily comes from the North Atlantic Oscillation during boreal winter.

Second, we explored the importance of ocean dynamics in the predictability of

TAV. We used the CCM3 coupled to a slab ocean as a tier-one prediction system. The

ocean processes are included as a statistical correction that parameterizes the heat

transport due to anomalous linear ocean dynamics. The role of ocean dynamics was

studied by comparing prediction runs with and without the correction. We showed

that in the corrected region the corrected model outperformed the non-corrected one

particularly at long lead times. Furthermore, when the model was initialized with

global initial conditions, tropical Atlantic SST anomalies are skillfully predicted for

lead times of up to six months. As result, the corrected model showed high skill in

predicting rainfall in the ITCZ during boreal spring.
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∂T ′
∂x

, (d) −u′
E

∂T̄
∂x

,

(e) −v̄E
∂T ′
∂y

, (e) −v′
E

∂T̄
∂y

onto the principal component of the lead-

ing EOF of observed SST. Shading indicates significance at the

95% level. In (a) the units are 10−1ms−1, and in (b)-(e) the units

are 10−8Ks−1. Note that in (b) contour interval is double from

that of (c)-(e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

46 Leading EOFs of predicted SSTs for PAIC (a,b), PGIC (c,d),

CPAIC (e,f) and CPGIC (g,h). . . . . . . . . . . . . . . . . . . . . . 138



xviii

FIGURE Page

47 Leading EOF of the SST difference between CPGIC and PGIC

during MAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

48 Composite of SST and surface winds for observations (left panels),

PGIC (middle panels) and CPGIC (right panels). The years used

in the composite are extreme years of the EOF shown in Figure

47. Note that in the left panels the SST contours are 0.2K, while

in the other panels the contours are 0.1K. . . . . . . . . . . . . . . . 143

49 Composite of observed SST (left panels), and the contribution of

the Ekman pumping to SST evolution (right panels). The years

used in the composite are extreme years of the EOF shown in

Figure 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



1

CHAPTER I

INTRODUCTION

A. Motivation

Climate directly affects human socio-economic activities. In order to exploit beneficial

climate variations and mitigate the effects of harmful ones we must first understand

how the climate system works and then be able to predict it [NRC , 1998]. The

overall goal of this work is the understanding of the predictable part (as opposed

to the stochastic part) of climate in the Atlantic basin to help improving climate

predictions on seasonal-to-interannual time scales.

Since the pioneering work of Lorenz [1963] it has been shown that the equations

for weather forecasting represent a forced dissipative nonlinear dynamical system,

and therefore infinitesimally small errors in the specification of the initial state of the

atmosphere will grow exponentially, limiting the predictability of weather to about

two weeks. Climate prediction circumvents this limit by forecasting the statistics of

weather, that is, the climate. In certain regions of the globe weather regimes are

strongly influenced by “external factors” through, for example, boundary conditions

like sea surface temperature (SST), soil moisture, or land and sea ice extent. The

fact that these external factors, such as SST, have much longer “memory” (due to

slow adjustment of the oceans in this case) gives rise to the possibility of predicting

weather statistics at a much longer time scale than the two-week limit imposed by

the “internal dynamics” of the atmosphere. In the language of dynamical systems,

these “external factors” alter the likelihood of residence of the orbit in different parts

of the phase space, thus enabling a statistical forecast of the seasonal-to-interannual

The journal model is Journal of Geophysical Research.
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climate mean conditions.

SST anomalies have been recognized as one of the most important external factors

influencing the atmosphere. Accordingly, to predict climate we need to understand:

(1) the genesis and evolution of SST anomalies, and (2) the atmospheric response to

SST anomalies.

The simplest theory of SST variations is that of Hasselmann [1976]. He demon-

strated that the low-frequency variability of the SST could be thought as the inte-

grated response of the ocean to high-frequency stochastic atmospheric forcing. If this

mechanism were the only operating, the time scale of predictability of the SST would

be given by its autocorrelation (given by ocean’s thermal inertia and the heat flux

damping), and the best prediction would be a damped persistence forecast. This

paradigm has been successfully used to describe the low-frequency variability of SST

in the extratropics [Frankignoul and Hasselmann, 1977]. Moreover, it has been shown

that in the extratropics the ocean feeds back to the atmosphere enhancing the low-

frequency variance of the atmospheric internal variability without affecting atmo-

spheric dynamics [Barsugli and Battisti , 1998]. To date, there has been no clear

demonstration of significant air-sea coupling in the extratropics beyond this local

passive thermodynamic feedback.

In the tropics ocean-atmosphere interaction is much stronger than in the extra-

tropics and true coupled modes can develop. The existence of these coupled modes,

which are partially predictable, greatly helps the feasibility of seasonal-to-interannual

climate prediction. A typical example of such a mode is the El Niño-Southern Oscil-

lation (ENSO) which involves a dynamical coupling between the wind stress and the

ocean’s thermocline on interannual time scales [Neelin et al., 1998]. The SST anomaly

associated with these coupled modes changes convection patterns re-distributing the

release of latent heating in the tropical atmosphere. Consequently, climate anomalies
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(or signals) are not only created locally, but also on remote locations through, for

instance, the excitation of anomalous wave trains [Hoskins and Karoly , 1981]. These

atmospheric anomalies can in turn influence the evolution of SSTs in other basins,

which may also force the atmosphere. Therefore, tropical ocean-atmosphere interac-

tion allows the prediction of SSTs beyond the time scale given by the ocean’s thermal

inertia. Thus, understanding the processes involved in the coupling, the evolution of

associated SST anomalies and their influence on the atmosphere is a central focus of

climate research.

Until very recently, most research efforts have been focused on the tropical Pa-

cific and ENSO-related climate predictability. This research has demonstrated that

ENSO-related SST anomalies can be predicted several seasons in advance using ei-

ther coupled dynamical models or statistical models, and these SST predictions can

improve seasonal climate forecasts in certain regions of the globe (e.g. Cane et al.

[1986], Barnston and Coauthors [1994], for a review see Goddard et al. [2001]). Based

on these successes, a number of national and international programs have been devel-

oped to seek improving and extending seasonal-to-interannual climate predictability

from its present tropical Pacific and ENSO-centric basis to the global domain. This

study aims at understanding seasonal predictability in the Atlantic sector as defined

by (75◦W-30◦E, 50◦S-30◦N). This region is host to a very large population whose

wellbeing and economic activity is directly influenced by rainfall variability (Figure

1). We focus our study on ocean-atmosphere interaction in two main areas: the South

Atlantic convergence zone (SACZ), and the Tropical Atlantic region (between about

30◦S-30◦N).

The SACZ appears in the austral summer as a diagonal band of convective precip-

itation extending from the Amazon basin toward the southeast reaching the subtrop-

ical South Atlantic. It modulates the intensity and location of the summer rain in the



4

Population Density and Rainfall Climatology in JFM
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very densely populated area of southeastern Brazil and neighboring countries (Figure

1). Variations of the SACZ have also been connected to changes in the Plata River

Basin [Robertson and Mechoso, 2000]. This basin is critical to local economies gen-

erating about 70% of the total Gross National Product of Argentina, Brazil, Bolivia,

Paraguay and Uruguay. Thus, advances in understanding of SACZ variability and

predictability will greatly benefit these countries through improved decision-making.

The socio-economic importance of Tropical Atlantic Variability (TAV), which

refers to substantial variations on interannual and decadal time scales in tropical

Atlantic SST with direct impact in the climates of Africa and Americas, has been

recognized by the Climate Variability program (CLIVAR). The Intertropical Con-

vergence Zone (ITCZ), a band of surface wind convergence and strong convective

activity, dominates climatic variability in this region. The ITCZ is close to be zon-

ally symmetric and moves latitudinally with seasons being closer to the equator in

March-April and at about 7◦N during July-August (Figure 1). Interannual changes in

position and intensity of the ITCZ largely determines the variability of precipitation

during the rainy seasons of Northeast Brazil [Hastenrath and Heller , 1977], and the

Sahel [Lamb, 1978]. In turn, the ITCZ is strongly coupled to the cross-equatorial

gradient of SST, leading to an ocean-atmosphere coupled mode of variability called

the “gradient mode” [Nobre and Shukla, 1996; Chang et al., 1997], which peaks dur-

ing boreal spring. The Atlantic basin also exhibits variability akin to ENSO that

reaches maximum strength during boreal summer [Zebiak , 1993; Carton and Huang ,

1994]. This mode is sometimes called the “zonal mode”. There is ample evidence

that TAV is remotely influenced by ENSO [Enfield and Mayer , 1997], and by the

North Atlantic Oscillation (NAO) [Marshall et al., 2001]. However, recent modeling

studies have also shown that tropical Atlantic SST can in turn influence the NAO

[Robertson et al., 1999], and induce changes in the ITCZ of the eastern tropical Pacific
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[Saravanan and Chang , 2000]. Thus, further understanding of TAV will benefit not

only the development of seasonal-to-interannual climate prediction in the region, but

also the understanding of global scale climate variability.

B. Objectives

In the first part of this study we assess the influence of SST on the variability of

the SACZ, and its seasonal potential predictability. We approach this problem as a

predictability problem of the second kind, that is, SSTs are assumed to be known in

advance and the estimation of potential predictability gives an upper limit for seasonal

predictability (see Apendix A). We search for spatial structures that are optimally

forced by SST anomalies from the global oceans, and study the physical mechanisms

involved. To do so we use large ensembles of Atmospheric General Circulation Models

(AGCMs) forced with observed SST as boundary condition.

In the second part of this study we study the variability of the gradient mode. Its

evolution has been shown to be influenced locally by thermodynamic air-sea feedbacks

[Chang et al., 1997], and remotely by ENSO and the NAO. These remote influences

act primarily on the northern tropical Atlantic. To date, the possibility of a Southern

Hemisphere (SH) influence has not been addressed. Here we try to fill in the gap

and explore the role of the SH atmospheric circulation in the evolution of the gra-

dient mode, so that a more comprehensive understanding of the mode’s behavior is

achieved.

Recently, Chang et al. [2003a] coupled an AGCM to a slab ocean to predict

tropical Atlantic SSTs. The model showed large skill for SST prediction in the tropical

North Atlantic, but low skill in equatorial and cold tongue regions, presumably due

to the absence of ocean dynamics. In the third part of the study we investigate
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the importance of ocean dynamics in TAV. Here, we will approach the problem as

a predictability problem of the first kind, that is, one in which the evolution of

the atmosphere and the ocean is calculated at the same time (see Apendix A). A

specific issue we want to address is the following: is it possible to correct the slab

ocean statistically in such a way that empirically parameterizes the relevant ocean

dynamics and improves the seasonal climate prediction of TAV?
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CHAPTER II

VARIABILITY OF THE SOUTH ATLANTIC CONVERGENCE ZONE

A. Introduction

The South Atlantic convergence zone (SACZ) is a band of convective activity with

high rainfall rates which develops in a region defined roughly by [15◦S-40◦S, 55◦W-

20◦W] in a northwest-southeast line. It extends from the active convective area in

the Amazon to the southeast subtropical and extratropical Atlantic Ocean [Kodama,

1992]. The SACZ has its largest manifestation during the summer season (January-

February-March, JFM) of the Southern Hemisphere (SH).

Kodama [1992, 1993] suggested that the SACZ as well as other subtropical con-

vergence zones, such as the South Pacific convergence zone (SPCZ), appear when

two necessary conditions in the midlatitude circulation are satisfied: 1) subtropical

jet flows in the subtropical latitudes (30◦S to 35◦S), and 2) low-level poleward flows

prevail along the western peripheries of the subtropical highs. If these conditions

are not satisfied, the convergence zone is weak and low rainfall rates are expected.

This is because a poleward flow intensifies moisture convergence, and together with

the subtropical jet they lead to favorable conditions for development of frontogenesis

and convective instability. These conditions are usually met in the summer season

together with the development of a heat low on the continent which increases the

poleward flow in the eastern side of the continent, thus increasing moisture availabil-

*Portions reprinted with permission from ”Variability of the South Atlantic Con-
vergence Zone simulated by an atmospheric general circulation model” by Marcelo
Barreiro, Ping Chang and R. Saravanan, 2002. Journal of Climate, 15, 745-763.
Copyright 2002 by the American Meteorological Society. Permission to place a copy
of this work on this server has been provided by the American Meteorological Society.
The AMS does not guarantee that the copies provided here are accurate copies of the
published work.
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ity.

Figueroa et al. [1995] reported the results of a regional eta-coordinate model

simulation of the SACZ. Their results show that diabatic heating over the Amazon

and the steep Andean topography are essential ingredients for the formation of the

SACZ, while the inclusion of the climatological flow introduces modifications mainly

in the location of the convergence zone. Lenters and Cook [1995], on the other

hand, attribute the formation of the SACZ to the “continentality”, i.e., the land-

sea contrast in the absence of topography and longitudinal SST variations. Using a

simple tropical atmosphere model, Wang and Li [1993] studied the formation of the

SPCZ and suggested that the SST gradients could originate this convergence zone.

In the SACZ case, Figueroa et al. [1995] argue that warm SST does not play a very

important role in the generation of the SACZ because the warm SST tongue in the

South Atlantic does not coincide with the location of the SACZ, but lies to the north

of it (Figure 2). However, this does not necessarily exclude the possible influence of

SST anomalies on the variability of the SACZ. In fact, the work of Lenters and Cook

[1995], where the inclusion of non-zonal SST affected both the position and intensity

of the SACZ, hinted the potential importance of SST influence.

In an observational and mechanistic study, Kalnay et al. [1986] reported the exis-

tence of a relationship between the strengthening of the SACZ and a strong eastward-

shifted SPCZ in austral summer. They further speculate that this teleconnection

would take place through changes in the Walker circulation during warm ENSO years.

In a more recent work, Robertson and Mechoso [2000] found that the SACZ shows

both interannual and interdecadal variability. On interannual time scales, an in-

tensification of the SACZ and associated anomalous descent to the southwest, are

accompanied by an upper troposphere cyclonic eddy in the lee side of the Andes. Ac-

companying these interannual variations are atmospherically forced SST anomalies of
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dipole-like structure with a nodal line near 40◦S. In their study interannual variability

was found to be largely independent of ENSO. On interdecadal time scales, a 15-17

year component was detected, which shows correlation to SST in the subtropical

South Atlantic.

The main purpose of this chapter is to examine the forced interannual and decadal

variability of the SACZ. We are particularly interested in the forced part of the

total variability because it is the only part that may have some predictability by

knowing the changes in the boundary conditions beyond the two-week limit of weather

prediction imposed by the chaotic nature of the atmosphere. We hypothesize two

possible ways that variability of the SACZ may be influenced by SSTs. The first

would be a remote influence in which the ENSO related variability in the tropical

Pacific modifies the atmospheric circulation in the subtropical Atlantic leading to

changes in precipitation. The second way is through the local influence of the Atlantic

SST anomalies. A possible mechanism in the latter case, though not fully tested here,

is that SST anomalies modify the stability properties of the atmospheric boundary

layer producing changes in the convective activity and subsequently in the strength

of the SACZ.

The chapter is organized as follows. Section B introduces the model and data sets

and describes the methodology used in this work. A comparison between simulated

and observational climatologies and variabilities is given in section C. In section D we

investigate the preferred modes of variability in the SACZ region and search for forced

responses using the signal-to-noise optimization procedure. Section E summarizes our

findings and discusses their relationship with previous works. In section F we test the

sensitivity of the results on model physics by comparing with the output of another

model. The last section presents our conclusions.
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B. Data and methodology

1. Data

The data set used here consists of monthly mean fields from 5 runs of the latest version

of the Community Climate Model (CCM3) developed at the National Center of Atmo-

spheric Research (NCAR). The model has a spectral truncation T42 in the horizontal

direction and 18 vertical levels. A complete description of the model physics can be

found in Kiehl et al. [1998]. Here we give a short summary of the physical packages

that influence most the structure and intensity of precipitation anomaly: convective

and land surface schemes. The CCM3 uses the scheme developed by Zhang and Mc-

Farlane [1995] to account mainly for the effects of deep convection, and the scheme

of Hack [1994] to deal with shallow and mid-level convection. The Zhang-McFarlane

scheme assumes that the effects of convection are to relax the convective available

potential energy (CAPE) towards a specified threshold value with a specified time

scale. Quasi-equilibrium states develop when large scale processes act to persistently

increase local CAPE. The land surface models (LSM) used in CCM3 is the NCAR

LSM 1.0, which is a one-dimensional model of energy, momentum, water and CO2

exchange between atmosphere and land. It accounts for ecological differences among

vegetation types, hydraulic and thermal differences among soil types, and allows for

multiple surface types including lakes and wetlands within a grid cell Bonan [1998].

The 5 runs were forced with identical observed global SST from January 1950

to December 1994, but initialized with slightly different initial conditions in order to

represent the internal atmospheric variability which has been shown to be fairly well

reproduced by this model [Saravanan, 1998]. The imposed SST is that of Smith et al.

[1996], in which a reconstruction algorithm based on empirical orthogonal functions

is used to generate the data set. This set of runs has been referred to as GOGA runs,
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e.g., [Saravanan and Chang , 2000]. The specification of SST implies that the ocean

has infinite heat capacity, and does not allow for any kind of feedback between the

ocean and the atmosphere in the model.

Since we are mainly interested in the SACZ variability, the analyses presented

below are confined in the domain from 70◦W to 20◦E in longitude and from 50◦S

to 20◦N in latitude. We analyze the variability only in the austral summer season

(JFM), when the SACZ shows its mature development. Therefore, we take seasonal

averages of the monthly mean data over these three months, which leaves us with an

ensemble of 5 runs, each comprising 45 austral summers with a spatial resolution of

roughly 2.8◦ x 2.8◦ degrees.

Two key variables are chosen to describe the state of the simulated SACZ: the

precipitation field as a measure of atmospheric convective activity, and the diver-

gence of the upper level (200mb) winds as an indication of changes in the upper level

circulation of the atmosphere. To compare with observed variability, we use the Xie-

Arkin data set for the precipitation [Xie and Arkin, 1996], and the NCEP-NCAR

(National Center for Environmental Prediction-National Center for Atmospheric Re-

search) Reanalysis data set for the upper level wind flow [Kalnay et al., 1996]. Both

fields have been proven useful for characterizing large scale, low-frequency variability

of the SACZ, e.g., [Robertson and Mechoso, 2000]. Since the observed and simulated

data sets cover different time periods, the comparison of observed and modeled cli-

matology and variability was made in the common time periods, i.e. 1979-1994 for

precipitation and 1958-1994 for the upper level wind divergence.

2. Methodology

Finding a forced signal, either local or remote, in the subtropical atmosphere is not

a trivial task due to the large atmospheric internal variability [Venzke et al., 1999;
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Chang et al., 2000]. If we consider the internal variability as “noise”, this problem

can be overcome by applying a so called signal-to-noise (S/N) optimization procedure

to an ensemble of AGCM integrations. Conceptually, this analysis is based on a pre-

whitening technique commonly used in signal processing. It is related to the optimal

fingerprint algorithm of Hasselmann [1979]. We apply this S/N optimization analysis

to extract the forced signal in the SACZ variability in much the same way as done in

Venzke et al. [1999] and Chang et al. [2000]. The technique is described in Appendix

A and references therein. Here, we will merely touch upon what lies at the heart of

the algorithm: the pre-whitening filter.

The pre-whitening filter technique requires the construction of a filter based on

the empirical orthogonal functions (EOF) calculated for the “noise” (internal vari-

ability only), which can be computed as the combined departures of each ensemble

member from the ensemble mean. Results may depend on the number of EOFs, i.e.

truncation level, used to construct the filter. Usual values range from 15 [Venzke

et al., 1999] to 36 [Chang et al., 2000]. Chang et al. [2000] found that individual

seasons show some sensitivity to the truncation level. Accordingly, sensitivity tests

are needed to obtain robust results. In this study we found that results are stable

when truncation level varies between 30 and 60 “noise” EOFs. Therefore, all the fil-

ters were constructed using 40 “noise” EOFs and the results shown below were based

on this choice of truncation. This truncation level is in agreement with the rule of

thumb discussed in Chang et al. [2000] in which a minimum number of 5 samples per

truncation level is demanded. In section F we use a modified version of this technique

in which there is no need to explicitly construct the pre-whitening filter. Results are,

nevertheless, independent of way the technique is implemented.

Before applying the S/N optimization algorithm, we performed a conventional

EOF analysis on the precipitation and upper level wind divergence fields in order to
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find the dominant patterns of circulation in the atmosphere. Since these EOFs con-

tain not only the forced response, but also the internal variability, we expect to find

differences in the patterns obtained from different ensemble members. Two limiting

cases are of interest: In the case where the forced signal is dominant, conventional

EOFs and S/N optimals should be very similar in the sense that both patterns would

be attributed to SST forcing, and associated time series should be significantly cor-

related to SST time evolution. In the case where the internal variability dominates,

conventional EOFs should show little connection to sea surface temperature anomaly.

In the SACZ region, we expect the latter case to hold, i.e., conventional EOFs and

S/N optimals are likely to be different.

In addition to EOF analysis, correlation and regression analyses were also car-

ried out in order to find relationships between SST anomalies and the atmospheric

response. A two-sided Student’s t-test [von Storch and Zwiers, 1999] was used to

assess the local statistical significance of the correlations at the 95% significance level

under the assumption that summer seasons in different years are independent (no year

to year persistence) so that the number of degrees of freedom is equal to the number

of data points. Values below the 95% significance level (r < 0.3) were considered to

be not significantly correlated.

C. Climatology

The climatology and RMS variability of the ensemble mean and of ensemble members

are compared against observational counterparts. The RMS of the ensemble mem-

bers is calculated after concatenating all 5 members to form only one time series.

We expect climatologies of ensemble mean and of ensemble members to be almost

identical, but the RMS of the ensemble mean to be significantly smaller due to the
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reduction of internal variability. If the model was perfect, then reality would be one

realization of the ensemble runs. In this case we would expect that the observed data

had the same statistics as the ensemble members. Therefore, the RMS deviation of

the observations should be compared to the RMS deviation of ensemble members

rather than that of the ensemble mean.

Figure 2 shows the climatology and RMS deviation of the precipitation field for

the ensemble mean, ensemble members and the Xie-Arkin data. Superimposed is the

summertime climatology of the Atlantic SST. It is clear that the CCM3 reproduces

the overall pattern of austral summertime precipitation. The SACZ appears as a

northwest-southeast band of heavy precipitation extending from the Amazon basin

toward off the coast of southern Brazil. The mean axis of maximum precipitation in

the SACZ region is shown as a dashed line in Figure 2a. The intensity of the SACZ is

somewhat overestimated compared to the observations in much the same way as in the

Atlantic ITCZ region (Figures 2a, 2c and 2e). For comparison, in the Pacific sector

the ITCZ and SPCZ regions are also somewhat overestimated, while in the monsoon

trough the precipitation is not as large as in the observations. Note also that contrary

to observations the mean modeled ITCZ axis in the Atlantic sector is located to the

south of the Equator. The SACZ variability is indicated by the RMS deviation maps,

which shows interannual variability of comparable magnitude as the seasonal means.

As expected, although the patterns of RMS deviation look similar in all three cases,

the RMS of ensemble members is in a closer agreement in magnitude with observations

than that of the ensemble mean. A comparison between the RMS variability of the

ensemble mean and ensemble members indicates a significant reduction of the RMS

variability over South America for the ensemble mean, whereas the reduction over the

ocean is much smaller. This suggests that the precipitation variability over the land is

largely dominated by the internal variability of the atmosphere and land-atmosphere
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interactions. Over the ocean the precipitation variability is more influenced by the

surface boundary conditions, i.e. SST.

To quantify this assertion we calculate the percentage of precipitation variabil-

ity due to internal dynamics as given by the difference between the variability of

ensemble members and that of the ensemble mean over the variability of ensemble

members. The result indicates that over land approximately 65% of the total precip-

itation variance may be attributed to internal variability. Over the tropical Atlantic

Ocean, in the ITCZ region, internal variability accounts only for 20% of precipitation

variance, while in the subtropical regions of the Atlantic it accounts for 50% of total

variance. In the SACZ region indicated by the rectangular box in Figure 2, the mean

explained precipitation variance by internal variability is 59%. Of particular interest

is a relatively small area of the precipitation anomaly associated with the SACZ over

the South Atlantic Ocean, where the internal variability explains only about 30% of

total variance. The analysis presented below suggests that a significant portion of

this precipitation anomaly can be explained as a forced response to South Atlantic

SSTs. The potential predictability of precipitation in the SACZ region will be further

examined in section F.

Figure 3 shows the climatologies and RMS variability of the 200 mb wind diver-

gence in JFM season. The axis of mean maximum divergence in the SACZ region is

shown as a dashed line in Figure 3a. Here we contrast the CCM3 results with the

divergence calculated from the NCEP-NCAR Reanalysis data set. It is evident that

the overall structures of the two climatologies bear certain resemblance. However,

the SACZ in the CCM3 is more sharply defined and more closely connected to the

convective activities over the Amazon basin and the ITCZ region than that in the

NCEP-NCAR Reanalysis. The SACZ in the NCEP-NCAR Reanalysis has a partic-

ularly weak structure over the ocean (Figures 3a, 3c and 3e). This is in contrast to
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Fig. 2. JFM precipitation climatology and RMS variability for ensemble mean (a,b),

ensemble member (c,d) and Xie-Arkin data (e,f). Contours are in mm day−1.

Superposed is the SST climatology in JFM (dotted lines). The box marks the

SACZ region and the dashed line marks the mean precipitation axis of SACZ.
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the ITCZ where the NCEP-NCAR climatology shows a stronger structure than the

CCM3. In terms of RMS variability, the SACZ structure is not as well defined as

in the precipitation field, although a clear signal can still be identified in all three

cases. Again, we find that the RMS variability of the ensemble members bears closer

resemblance in both spatial structure and magnitude to that of the NCEP-NCAR

Reanalysis. Comparing Figures 3b, 3d and 3f, it is seen that the RMS variability of

the ensemble mean is significantly weaker than that of the ensemble members and of

the NCEP-NCAR Reanalysis throughout the tropical Atlantic sector, suggesting that

much of variability of the upper atmosphere is governed by the internal atmospheric

variability.

In summary, we can conclude that the CCM3 reproduces reasonable well the cli-

matology and RMS variability of the precipitation and 200mb wind divergence over

the tropical and subtropical South Atlantic. It has been shown by many investigators,

e.g., [Hess et al., 1993], that different convective parameterizations may lead to dif-

ferent results in precipitation variability. Therefore, although the CCM3 appears to

reproduce the major features of the SACZ fairly realistically, results may be, however,

model dependent. An intercomparison study with other models and with higher res-

olution is desirable in order to assure that results presented below are not resolution

or model dependent. Section F presents an intercomparison study of the CCM3 with

version 1.0 of the AGCM developed at the NASA Seasonal-to-Interannual Prediction

Project (NSIPP-1 model).

D. Identification of forced responses

In this section we further analyze the precipitation and divergence fields using a

number of statistical techniques to search for forced patterns of variability in the
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Fig. 3. JFM 200mb wind divergence climatology and RMS variability for period

1958-1994 for CCM3 ensemble mean (a,b), CCM3 ensemble member (c,d) and

NCEP-NCAR Reanalysis data set (e,f). In (a) dashed line marks the mean

axis of maximum divergence in the SACZ region. Contour interval is 10−6 s−1.
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subtropical atmosphere. First, we applied conventional EOF and regression analyses

to the simulations and compare the results with the corresponding observations. Then

we employ the signal-to-noise optimization analysis to identify the forced response of

the atmosphere to SST anomalies. All the analyses were performed in the SACZ

region defined as the region between 60◦W and 10◦W in longitude and between 50◦S

and 15◦S in latitude (the box indicated in Figure 2a). This choice of the analysis

domain is made to isolate the variability of the SACZ from other stronger features of

the climate system, such as the ITCZ.

Three indices were constructed to represent the possible SST forcing from the

tropical Pacific and Atlantic onto the atmosphere. The influence of ENSO is repre-

sented by the Niño3 index defined as the average of SST anomalies over 150◦W to

90◦W and 5◦S to 5◦N in JFM. To characterize the South Atlantic SST forcing, we

used the principal components (PCs) of the two leading EOF modes of the SST dur-

ing austral summer, shown in Figure 4. The two leading EOFs account for 37% and

23% of the total variance, respectively. The first EOF shows a dipole-like pattern of

SST anomalies, whereas the second shows a monopole centered at (25◦W,30◦S). We

use AT1 and AT2 to denote the PCs associated with the first two leading SST EOFs.

Figures 4c and 4d show AT1 and AT2 (solid lines) along with Niño3 index (dotted

line) time series. The three time series show little correlation among each other. It

is important to note that AT1 exhibits interannual time scales before mid-1970s and

decadal time scales after that, while AT2 is mostly dominated by interannual vari-

ability superimposed on a linear trend. The first SST EOF (Figure 4a) resembles the

second annual EOF of the South Atlantic SST obtained by Venegas et al. [1997].
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1. Precipitation variability

EOFs were calculated using the covariance matrix of concatenated ensemble member

anomalies. Figures 5a,b show the first and second leading EOFs of the precipitation

field, which explain 23% and 18% of total variance respectively. These EOFs are

statistically distinct according to the rule of thumb given by North et al. [1982]. The

first EOF consists in a northeastward-southwestward shift of the continental part

of the SACZ from its climatological position (characterized by its mean axis shown

as a dashed line in Figure 5a), while the oceanic part tends to strengthen/weaken.

The second EOF shows the opposite behavior, i.e., a strengthening of the SACZ

over land and a shift over the ocean. The fact that the SACZ does not vary as

an integrated structure suggests that the processes governing the variability of the

oceanic and continental parts of the SACZ may be different. Figures 2b and 2d hint

that the origin of this difference may be in the role of local SST forcing onto the

atmosphere. The signal-to-noise optimization analysis discussed below will confirm

this finding. However, we caution that this result may depend on the sensitivity

of land-atmosphere feedbacks in the model to changes in the hydrological cycle. In

the CCM3, this sensitivity appears to be rather weak so that changes in SST-forced

precipitation does not seem to trigger a strong feedback between the atmosphere

and land, and thus the convective activities over the land region of the SACZ are

largely independent of changes in SSTs. Other models may, in principle, behave

differently. We will see, however, that the NSIPP-1 model, that has different physical

parameterizations, shows a very similar response to SST forcing as that of the CCM3

(see section F).

Figures 5c and 5d show the principal components of leading EOFs associated with

each ensemble member. Clearly, there is a large within-ensemble variability, which
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Table I. Correlation between the PC time series of the first EOF of precipitation

anomalies of each ensemble member and the South Atlantic indices (AT1

and AT2) and Niño3 index. PC-i denotes principal component time series as-

sociated to i-th ensemble member. ‘*’ denotes values that are not significant

at 95% level.

PC-0 PC-1 PC-2 PC-3 PC-4

Niño3 * * * * *

AT1 0.32 * 0.41 * *

AT2 -0.34 -0.32 * * *

results from a large internal variability. Tables I and II summarize the correlations

between the PCs of each ensemble member and the three indices, i.e., Niño3 index,

AT1 (first Atlantic SST mode) and AT2 (second Atlantic SST mode). Only those

correlations that are above the 95% significance level according to a Student t-test

are shown; values that are below the 95% significance level are indicated by ‘*’.

As expected from the large within-ensemble variability, correlations with the indices

vary from one ensemble to another. Interestingly, no PCs of either the first or second

EOFs of ensemble members show significant correlation with ENSO. However, some

of the PCs do display significant correlation with Atlantic SST anomalies. Since

each ensemble member represents a particular realization of the system, there is

no “a priori” reason to judge which ensemble member is more realistic. Therefore,

the significant correlation shown by some PCs of ensemble members may occur by

chance and does not necessarily mean that there is a real relationship between SACZ

precipitation anomalies and the Atlantic SST anomalies.

Next we compare the EOF analysis of the CCM3 ensemble mean with those of
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Table II. The same as Table 1, except for the second EOF of precipitation anomalies.

PC-0 PC-1 PC-2 PC-3 PC-4

Niño3 * * * * *

AT1 0.37 * 0.34 0.44 0.47

AT2 * * * * 0.33

individual ensemble members. The first EOF of the ensemble mean is almost identical

to Figure 5a (not shown) and explains 28% of the total variance. The second EOF

accounts for 20% of the total variance and is very similar to Figure 5b (not shown).

Table III shows the correlation between the ensemble mean PCs and the three indices

characterizing ENSO and South Atlantic SST variability. The two leading modes of

ensemble mean again show no correlation to ENSO SST anomalies. The first EOF

of the ensemble mean, on the other hand, shows a high correlation (0.64) with the

first Atlantic SST mode, while the second EOF shows a correlation of (-0.52) with the

second mode of Atlantic SST variability. Thus, the two leading modes of precipitation

in the SACZ region seem to be related to the first two modes of variability of SST in

the South Atlantic Ocean, although there are also contributions of the second South

Atlantic SST mode to the first precipitation EOF and of the first South Atlantic SST

mode to the second precipitation EOF (Table III).

A similar EOF analysis of the observed precipitation from the Xie-Arkin data set

results in two EOFs shown in Figures 5e and 5f, each of which explains 38% and 12%

of the total variance, respectively. Both EOFs exhibit similarity to the corresponding

patterns of the CCM3 ensemble members or ensemble mean, particularly for the

first EOF (Figures 5a and 5e). However, the observed EOFs are not significantly
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Table III. Correlation between the PC time series of first two leading EOFs of ensemble

mean precipitation (first two columns) and of Xie-Arkin data set (last two

columns) and the South Atlantic indices (AT1 and AT2) and Niño3 index.

‘*’ denotes values that are not significant at 95% level.

PC1em PC2em PC1xa PC2xa

Niño3 * * * *

AT1 0.64 0.34 * *

AT2 0.35 -0.52 * *

correlated with ENSO or with South Atlantic SST modes (Table III).

The above EOF analysis reveals a considerable variability in the temporal behav-

ior of the dominant modes among the ensemble members and ensemble mean. These

differences arise because the EOFs are constructed in such a way that they simply

maximize the variance explained in a given data set. Since the total variability con-

sists of both forced and internal variability, the variance explained by these EOFs

contains a large fraction of internal variability which varies significantly from one

ensemble to another. The EOFs of the ensemble mean give better estimates of forced

patterns because the process of averaging filters out some portion of the internal vari-

ability. The projections of the individual ensemble members onto the EOFs of the

ensemble mean are spread around the time series of the ensemble mean (not shown).

This indicates that even the EOFs of the ensemble mean are not common structures

to all ensemble members and thus do not represent the true forced responses of the

atmosphere to SST forcing.

In order to separate the forced response of the precipitation field from its internal

variability, we performed the signal-to-noise optimization analysis as discussed in
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section B.2. Results are displayed in Figure 6. The leading S/N-optimal shows a

dipole pattern over the South Atlantic Ocean off the coast of South America with

almost no loading over land (Figure 6a).

The associated principal component (PR1) shows no significant correlation to

ENSO, but is highly correlated with the first Atlantic SST mode with a correlation

of 0.7 which is significant at the 99% level (Figure 6c). The correlation increases to

0.77 when a Parzen filter window of 5 years is applied. This result lends support to

the hypothesis that local SSTs provide a forcing onto the atmosphere. Note that the

pattern is similar to the oceanic part of the second regular EOF of precipitation, i.e.,

positive anomalies to the north of the mean SACZ axis and negative anomalies to the

south. The fact that there is almost no signal over land is in agreement with the idea

that local SST forcing is an important contributor to the variability of precipitation

in the oceanic part of the SACZ, but not in the continental part, i.e. it is a very

localized process. This also implies that precipitation variability is mainly influenced

by atmospheric internal variability and that the forced signal is hidden within the

total response.

The large-scale circulation structure associated with the dominant forced mode

is constructed by regressing SST, surface pressure, surface winds, precipitation and

surface fluxes onto PR1. Regressions are done over the domain from 70◦W to 20◦E in

longitude and from 50◦S to 20◦N in latitude to better reveal the circulation structure.

Figure 7a shows the regression of surface winds and SST onto PR1. The structure

of the SST anomalies shows a similar dipole structure as the first South Atlantic

SST mode in Figure 4a with maximum amplitude of 0.4◦C at 20◦S. The maximum

explained local variance by this mode is about 70% of the total variance near the

maximum SST anomaly. Surface wind vectors show anomalous circulation with a

maximum wind speed of 1.0 ms−1 flowing southward in the ITCZ region and north-
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Fig. 6. Signal-to-noise optimal patterns for precipitation in mm day−1: (a) the first

dominant forced response, and (b) second dominant forced response. (c) PC

time series of the first S/N-optimal (PR1, solid line) and of the leading South

Atlantic mode of SST variability (AT1, dotted line). (d) PC time series of the

second S/N-optimal (PR2, solid line) and Niño3 index (dotted line). In (a) and

(b) the dashed lines marks the mean precipitation axis in the SACZ region.
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westward to the south of the SACZ region. Thus, anomalous winds enhance moisture

advection to the northern part of the SACZ and bring drier air to the southeastern

part. The anomalous flow converges at (20◦S, 30◦W) and forms a cyclonic circulation

largely in geostrophic balance with the surface pressure anomaly shown in Figure 7b.

At upper levels the circulation anomaly consists of an anticyclonic eddy at the same

location (not shown), which is consistent with a Gill-type baroclinic response to a

local warm SST anomaly.

The regression of the precipitation is shown in Figure 7c. It indicates a positive

correlation between precipitation and SST anomalies consistent with previous re-

sults. This mode accounts for a large portion of the total precipitation variance near

the center of maximum precipitation. The location of the maximum precipitation

anomaly (0.8 mmday−1) also coincides with the center of convergence and of largest

negative anomaly in surface pressure. Note that the center of maximum precipitation

is displaced from the center of maximum SST anomalies towards the land. Figure 7d

shows the regression of the net downward surface heat flux onto PR1. As can be seen,

in the subtropics the heat flux anomalies have opposite signs to the SST anomalies,

indicating a negative feedback in which the atmosphere damps the SST anomalies.

On the contrary, in the deep tropics the SST and heat flux anomalies have the same

sign, suggesting the existence of a positive feedback [Chang et al., 2000]. These results

support the hypothesis of local SST forcing the atmosphere through modifications of

the boundary layer stability properties by enhanced atmospheric surface heat fluxes.

Heat flux anomalies in the deep tropics resemble the pattern associated to the

Atlantic gradient mode [Chang et al., 2000]. Also, Figures 7a and 7c suggest that

when the SACZ moves northward, the ITCZ moves southward as the warm anomaly

of the cross-equatorial gradient develops in the tropical South Atlantic. Therefore,

the first EOF of SST anomalies in the South Atlantic Ocean seems to be related to the
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Fig. 7. Three dimensional structure of the leading S/N-optimal construc- ted by re-

gressing (a) SST (◦C) and surface winds anomalies (m s−1), (b) pressure (Pa)

and surface wind anomalies, (c) precipitation (mm day−1) and (d) downward

surface heat fluxes (W m−2), onto PR1. Arrow indicates wind anomalies of

1 m s−1. Shaded areas are significant at the 95% level. In (a) shaded areas

indicate SST anomalies significant to 95% level, in (b) shaded areas indicate

pressure anomalies significant to 95% level.
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tropical Atlantic gradient mode. A further exploration of the relationship between

the ITCZ and the SH atmospheric circulation and SST anomaly is done in Chapter

III.

The second S/N-optimal of precipitation shows mainly a strengthening (weaken-

ing) of the northern oceanic portion of the SACZ and a shift over the land (Figure

6b), capturing some features of the first regular EOF. The associated PC (PR2) is

correlated to ENSO (r = 0.56) (Figure 6d), and also to both the first and second At-

lantic SST modes of variability with r = 0.36 and r = 0.53, respectively. Therefore,

this precipitation pattern seems to result from both local and remote SST forcing.

The structure of this mode is shown in Figure 8. Regressing South Atlantic SST

onto PR2 gives rise to a pattern which shows two local maximums at (10◦W, 25◦S)

and at (35◦W, 25◦S). Figure 8b shows that the anomalous circulation is mostly in

geostrophic balance with the pressure anomaly. The regression of precipitation (Fig-

ure 8c) shows that the maximum explained variance is over the ocean. Significant

precipitation anomalies also exist over the land, suggesting a northward shift of the

SACZ. It is interesting to note that the anomalies in the SACZ and ITCZ regions

have opposite signs. Finally, the flux anomalies appear as a dipole at both sides of

the SACZ main position (Figure 8d). The northern component has the same sign

as the SST, suggesting a positive feedback, whereas the southern component has the

opposite sign as the SST, suggesting a negative feedback.

In order to see if the precipitation patterns found by the signal-to-noise optimiza-

tion procedure are common to all the ensemble members we project each ensemble

member onto the filter patterns associated with the S/N-optimals (dotted lines in

Figure 9). The spread of individual members around the ensemble mean is much

reduced compared to the case of conventional EOF analysis, indicating that the pat-

terns found are common to all ensemble members. This shows that the algorithm has



32

60W 40W 20W  0W 20E
50S

40S

30S

20S

10S

 0 

10N

20N
c.

−1−0
.8

−0.6

−0.4

−0.2

−
0.2

−0.2

0

0

0

0

0

0

0

0

0

0
0

0.2

0.2

0.2

0.4

0.40
.6

60W 40W 20W  0W 20E
50S

40S

30S

20S

10S

 0 

10N

20N
a.

0 0

0

0

0

0.1

0.1

0.1

0.1

0.2

0.3

0.
3

1m/s

60W 40W 20W  0W 20E
50S

40S

30S

20S

10S

 0 

10N

20N
b.

−
40

−30

−20

−10

−10

0

0
0

10

10

20

20

20

20

20

30

30

30

40
50

1m/s

60W 40W 20W  0W 20E
50S

40S

30S

20S

10S

 0 

10N

20N
d.

−9
−6 −3

−3

−3

−3
−3

0 0

0

0
0

0

00

0

0

0

3

3
3

3

3

3

3 3

6

6

69 9

Fig. 8. Same as Figure 7 except for the second S/N-optimal of rainfall.
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Fig. 9. Principal component time series of the forced precipitation responses (solid

lines) superimposed on the projections of CCM3 ensemble members (dotted

lines) and of Xie-Arkin data set (dashed line) onto the optimal filter patterns:

(a) first S/N-optimal, and (b) second S/N-optimal.

been successful in extracting the true forced response and filtering out the internal

variability. Projections of the Xie-Arkin data set onto the filter patterns show time

series that appear to follow nicely the variations of model forced responses, especially

after 1982. This implies that the model captures an atmospheric response to SST

forcing that seems to exist not only in the ensemble simulations but also in the real

atmosphere, although certain caution must be taken in interpreting the observations

because of the shortness of record length.

2. Variability of upper levels wind divergence

Precipitation variability results from changing conditions over the whole depth of the

atmosphere, i.e. it depends on lower and upper level conditions and consequently

reflects an integrated effect. In this section we use the upper level wind divergence

mostly as a measure of upper level variability. Precipitation and upper level diver-

gence are not always correlated because while strong precipitation is often associated
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with upper level divergence, the converse is not always true. As we will find below

local responses are seen mainly in lower level fields, while remote influences are felt

in upper levels. Thus, the use of upper level wind divergence, which has been often

used as a proxy for the location and intensity of the SACZ [Kodama, 1992, 1993], is

adequate to study remotely-forced perturbations in the SACZ.

Similar analyses to the precipitation were performed to the wind divergence.

Figures 10a and 10b show the patterns of the leading EOFs calculated using the co-

variance matrix constructed after concatenating the ensemble members. The first

EOF explains 29% of total variance and the second EOF explains 18% of total

variance. Again, the temporal behavior of the patterns differs considerably among

ensemble members, indicative of a large atmospheric internal variability (Figures

10c and 10d). In contrast with the precipitation case, the divergence EOF patterns

show a consistent behavior over the whole SACZ region. The first EOF presents a

northeastward-southwestward displacement of the whole SACZ from its climatological

position (marked as dashed line in Figure 10a). Unlike precipitation, however, only

two of these leading PCs show significant correlation to the Atlantic SST anomalies,

and two of them show significant correlations to ENSO (Table IV).

The second EOF is statistically different from the first and third EOFs according

to the North et al’s rule. It shows a strengthening (weakening) of the whole SACZ,

and the PCs do not show significant correlation with any SST index.

The first two leading modes of the CCM3 ensemble mean are similar to the first

and second EOF modes shown in Figures 10a and 10b (not shown) and explain 37%

and 17% of total variance respectively. The first EOF is well correlated to ENSO, but

only weakly correlated to the South Atlantic SST modes (Table V). Therefore, this

mode of variability seems to be mostly remotely forced and only weakly influenced by

local SST. The second EOF of ensemble mean does not show significant correlation
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Fig. 10. Leading EOFs of 200mb wind divergence for CCM3: (a) first EOF, and (b)

second EOF. Time series of each ensemble member associated with first EOF

(c), and second EOF (d). Leading EOFs of NCEP-NCAR data set: (e) first

EOF, and (f) second EOF. Units are 10−6 s−1.
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Table IV. Correlation between the first EOF of 200mb wind divergence anomalies of

each ensemble member and the South Atlantic indices (AT1 and AT2) and

Niño3 index. PC-i denotes principal component time series associated with

the i-th ensemble member. ‘*’ denotes values that are not significant at 95%

level.

PC-0 PC-1 PC-2 PC-3 PC-4

Niño3 0.42 * 0.38 * *

AT1 * * * -0.34 *

AT2 * * * * -0.35

with any SST indices according to Table V.

The two leading EOFs calculated for the NCEP-NCAR Reanalysis data set ex-

plain 25% and 20% of total variance and are shown in Figures 10e and 10f. The

structure of the second NCEP-NCAR EOF shows some similarities to the first en-

semble members EOFs. However, the NCEP-NCAR EOFs show no correlation to

ENSO and no significant correlation to Atlantic SST modes of variability (Table V).

Projections of individual ensemble members onto the ensemble mean EOFs show

large spreading around the ensemble mean (not shown), suggesting that the upper

level response contains substantial internal variability. This implies that the first

ensemble mean EOF does not reflect the true forced signal, despite its significant

correlation to the SST indices shown in Table V.

The leading S/N-optimal shows a forced response in the form of a northeast-

southwest shift of the SACZ from its climatological position (Figure 11a). The signal

is particularly clear for the region of the SACZ over land. Over the ocean the pattern

represents more a strengthening (weakening) of the northern part of the SACZ than

a shift from its mean position. The correlation between the associated PC (DI1)
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Table V. Correlation of first two leading EOFs of ensemble mean 200mb wind diver-

gence (first two columns) and of NCEP-NCAR data set (third and fourth

columns) and the South Atlantic indices (AT1 and AT2) and Niño3 index.

‘*’ denotes values that are not significant at 95% level.

PC1em PC2em PC1ncep PC2ncep

Niño3 0.52 * * *

AT1 0.37 * * *

AT2 0.36 * * *

and Niño3 index is 0.70 (Figure 11c), implying that during warm ENSO events the

upper part of the SACZ tends to displace northeastward over the land and strengthen

over the ocean. The associated sea level pressure anomaly (Figure 11b) indicates a

northward shift of the South Atlantic subtropical high from its climatological position

in agreement with early studies of ENSO influence in this region, e.g., [Peixoto and

Oort , 1992]. The anomalous surface winds show convergence to the north of the

SACZ mean position which is consistent with the northeastward shift of the South

Atlantic subtropical high. The regression map of precipitation onto DI1 (Figure

11d) indicates a weakening of the ITCZ, accompanied by the change of precipitation

in the SACZ region. The negative rainfall anomaly in tropical regions indicates a

weakening and possible northward shift of the ITCZ during warm ENSO events. The

southeasterly wind anomaly in the western equatorial Atlantic supports this notion.

No significant correlation between DI1 and the Atlantic SST modes of variability

is found. However, DI1 shows a correlation of 0.61 with the second S/N-optimal

of precipitation (PR2) suggesting that the second dominant pattern of precipitation

is linked to the variability in the upper atmosphere. The similarity between the
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anomalous rainfall and surface circulation fields in Figures 8b and 8c with 11b and

11d strengthens this finding. We will show below that the close relationship between

the two modes can be attributed to the fact that both these modes are induced by

remote ENSO influence.

The reduced spread of the projections of ensemble members onto the optimal

filter associated to the leading S/N-optimal pattern of divergence confirms that the

leading forced mode is in fact a structure common to all ensemble members. The

projection of the NCEP-NCAR Reanalysis data set follows very closely the ensemble

mean projection, implying that the forced CCM3 response of the upper level wind

divergence seems to be also present in the real atmosphere (Figure 11c). The fact

that the leading S/N-optimal is more significantly correlated to ENSO than to the

South Atlantic SSTs suggests that the upper level divergence is primarily forced by

the SST anomalies in the tropical Pacific Ocean, but is not influenced so much by the

local Atlantic SST anomalies. This result contrasts sharply with the finding of the

precipitation field analysis, which shows a dominant response to local Atlantic SST

anomalies. Because of the strong local SST influence on the oceanic part of the SACZ,

the variability of the precipitation over the ocean appears to be disconnected from its

continental part. On the other hand, the upper level winds are not affected by the

local SST and therefore the divergence in the SACZ region varies as one structure

(Figures 5a and 5b, and 10a and 10b).

In addition to the above analyses, we have also constructed composite maps

associated with the warm ENSO events by averaging all the anomalies where posi-

tive values of DI1 exceed one standard deviation. These maps reveal similar spatial

patterns as shown in Figures 11b and 11d. However, the composite anomalies are

stronger and more sharply defined than those in the regression analyses. In contrast,

the composite anomalies of cold ENSO events are generally weaker than the regressed
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Fig. 11. (a) Leading signal-to-noise optimal pattern of 200mb wind divergence. The

dashed line marks the mean axis of maximum divergence in the SACZ region.

(b) The associated surface winds and surface pressure anomalies (contour in-

terval is 20hPa). (c) The associated time series (DI1, solid line) and Niño3

index (dashed line). Superimposed is the projection of NCEP-NCAR Reanal-

ysis data set onto the optimal filter pattern (dotted line). Shading shows

standard deviation of projections of ensemble members onto optimal filter

pattern about DI1. (d) The associated rainfall anomalies, and shade indi-

cates areas significant to 95% level. Arrow indicates wind anomalies of 1 m

s−1, and shaded areas are pressure anomalies significant to 95% level.
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anomalies, particularly over the oceanic portion of the SACZ (not shown). This may

imply a nonlinear nature of the SACZ response to ENSO influence. Further studies

are needed to understand the difference between SACZ responses to warm and cold

ENSO events.

To get a global view on how ENSO forcing propagates into the Atlantic, Figure

12 shows the regression of upper level wind anomalies onto DI1 in the whole tropical-

subtropical band. It clearly shows the observed anticyclone straddling the Equator

forced by convective anomalies associated to warm ENSO events. The figure also

reveals a propagating wave pattern emanating from the tropical Pacific. This supports

the notion that a remote influence from the tropical Pacific Ocean occurs in the

form of a wavetrain [Hoskins and Karoly , 1981]. Associated with this pattern is also

a strengthening/weakening of the subtropical westerly jet between 20◦S and 30◦S.

Close to the coast of southern Brazil and Uruguay the flow tends to be organized as

an upper level cyclonic eddy. Comparing with the low level winds in the same region

(Figure 11b) we conclude that the eddy has a barotropic structure because anomalies

have the same sign at upper and lower levels. This is in contrast with the baroclinic

response of the atmosphere to local SST forcing seen in section D.1.

In order to find the coherent behavior of upper level wind divergence and pre-

cipitation, we applied the same analysis to both fields simultaneously. It was found

that the leading joint mode consists of the first S/N-optimal for divergence and of the

second S/N-optimal for precipitation (not shown). The joint mode also shows a corre-

lation of 0.7 with Niño3 index. This result, together with previous findings about the

similarities between the first S/N-optimal of divergence and the second S/N-optimal

of precipitation, further suggest that these two patterns represent a single coherent

structure of remotely forced SACZ variability by ENSO.

The picture emerging from above analyses is as follows. The precipitation anoma-
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Fig. 12. Regression of 200 mb wind anomalies onto DI1. Units are m s−1. Shading

denotes that at least one wind component is significant to the 95% level;

lies in the SACZ region have two sources of influence: 1) a local influence due to At-

lantic SST variability at interannual-decadal time scales which may be the result of

modifications of the boundary layer stability properties by changes in the surface heat

fluxes, and 2) a remote influence due to Pacific SST variability (at interannual time

scales) which modifies the large scale upper level circulation and produces changes in

precipitation. The strong tie to surface conditions can be understood by the fact that

the SACZ, as the ITCZ, is a convective system that is dependent on surface SST and

heat fluxes. Remote forcing from the Pacific leads to a barotropic cyclonic eddy off

the east coast of South America. Although associated wind anomalies are weaker at

the surface than at upper levels, they propitiate precipitation anomalies by advecting

dry air to the southern part of the SACZ, and bringing moist air from the northwest

to the northern part of the SACZ.

E. Discussion

The major findings can be summarized as follows:
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• A significant portion of the subtropical atmosphere is governed by atmospheric

internal dynamics. In the CCM3, approximately 59% of the total variance in the

SACZ region can be attributed to the internal variability. For comparison, only

about 20% of total precipitation variance is accounted for by internal dynamics

in the ITCZ region. This suggests that the SACZ region may have much less

potential predictability than the ITCZ region.

• The modeled precipitation field shows a forced response to local anomalous SST

in the Atlantic Ocean on interannual-decadal time scales. It is well correlated

with the first EOF of austral summertime South Atlantic SST which consists of a

dipole-like SST anomaly centered at around 25◦S. This pattern of SST creates a

dipole-like structure in precipitation close to the coast of South America shifting

the SACZ to the northeast together with a clockwise anomalous circulation of

surface winds which is in geostrophic balance with the anomalous pressure. The

response is localized within the South Atlantic Ocean with almost no signal over

land, although there seems to be a simultaneous southward displacement of the

ITCZ.

• Upper levels wind divergence shows a forced signal closely related to ENSO

and is largely independent of Atlantic SST variability. This remotely forced

response, which seems to exist also in the real atmosphere, has interannual time

scales and produces a northeastward shift and strengthening of the SACZ during

warm ENSO events. These results are in agreement with the outgoing longwave

radiation (OLR) anomaly in an observational work by Aceituno [1988]. Model

results show that the SACZ tend to shift over the land and that the northern

oceanic part of the SACZ strengthens during warm events.
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The above results suggest two possible interrelated mechanisms through which

ENSO can exert its influence on the SACZ. First, our results show that warm ENSO

events weaken the intensity of the Atlantic ITCZ in the SH summer season (Figure

11d) in agreement with Aceituno [1988] and Saravanan and Chang [2000]. In the

SH summer season the Hadley cell is already weak compared with the SH winter

cell. Therefore, a decrease in the ITCZ intensity during ENSO will make it even

weaker. Also, the generation of a cyclonic anomaly off the coast of southern Brazil

and Uruguay weakens the subtropical high locally. Consequently, the south Atlantic

subtropical high becomes weaker and the poleward surface flow in its western flank

diminishes. This is consistent with a northward shift of the subtropical high dur-

ing warm ENSO events [Peixoto and Oort , 1992], as shown in Figure 11b. At the

same time, the northern portion of upper level subtropical westerly jet appears to be

strengthened in the Pacific sector and South American continent between 20◦S and

30◦S (Figure 12). According to Kodama [1993], the location of the SACZ is given by

the convergence region between the subtropical jet in the subtropics and the low level

poleward flow. In agreement with Kodama [1993] we found that the conditions of a

weaker surface poleward flow and an anomalously strong westerly jet shifts the con-

vergence zone to the northeast of its climatological position. This causes a decrease

in precipitation in the climatological position of the SACZ which is further enhanced

by the advection of dry air from the southeastward caused by the anomalous eddy.

Cook [2000] reported a similar northeastward shift of the South Indian convergence

zone during warm ENSO events.

On the other hand, the changes in the basic state associated with ENSO (Figure

12) and the shift of the mean position of the SACZ are consistent with the work of

Matthews and Kiladis [1999]. They found that during the so called “strong (North-

ern Hemisphere) winters” (an index with correlation of 0.9 to Niño3.4 index) Rossby
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wave-like transients are found to propagate preferentially along the strengthened sub-

tropical jet which act as a waveguide. This finding is in line with the barotropic Rossby

wave theory. Kiladis and Weickmann [1992] found that convection in the SACZ is

modulated by upper level wave activity in the westerlies. Our analysis suggests that

this mechanism may be operating on interannual time scales in the SACZ region.

During warm ENSO events, we have seen evidences for the strengthening of the sub-

tropical jet (Figure 12). Accompanying the strengthened westerly, we have observed

wave-like disturbances propagating along the subtropical jet deep into the tropical

South Atlantic, possibly triggering convection and shifting the mean position of the

SACZ northeastward. This result seems to be consistent with the mechanism sug-

gested by Matthews and Kiladis [1999]; in their Figure 3c anomalous negative OLR

is seen to the north of the main position of the SACZ in a composite map of “strong

winters” minus “weak winters”. The result is also in agreement with the work of

Figueroa et al. [1995] who found that inclusion of climatological flow can change the

position of the SACZ.

Furthermore, Kalnay et al. [1986] reported observational evidence of a stationary

Rossby wave during January 1979 situated at about (30◦S, 50◦W) associated to an

intensification of the SACZ. They suggested that tropical heating could generate the

waves and that a Walker type circulation associated with the SPCZ helps in their

maintenance, pointing to the importance of ENSO events in modulating the con-

vective activity in the SACZ and SPCZ. Actually, the strengthening of the SACZ

in their Figures 5a and 6a seems to be accompanied by a northeastward displace-

ment of the convergence zone from its mean position. Our findings seem to support

their result that the upper level circulation in the SACZ region on interannual time

scales is mainly remotely influenced by ENSO, and that warm ENSO events increase

convective activity in the SACZ region.



45

As mentioned in the introduction, Robertson and Mechoso [2000] performed an

EOF analysis to the NCEP-NCAR Reanalysis data set in the South American re-

gion. Their first EOF shows a strong upper level cyclonic eddy, associated with the

intensification of the SACZ. The center of the eddy is situated at (30◦S, 45◦W) and

has zonal wavenumber 6, slightly larger than the scale reported by Kalnay et al.

[1986]. A vorticity budget analysis showed that the eddy has the characteristics of a

locally forced stationary Rossby wave, and shows no correlation to ENSO. They fur-

ther argue that this circulation anomaly produces a surface heat flux anomaly which

generates an SST anomaly in the South Atlantic. Although they suggest that this

SST anomaly may increase the persistence of the SACZ anomalies through reduced

thermal damping, their results hint that changes in the SACZ are largely internally

driven. Robertson and Mechoso [2000] also reported a second EOF which is corre-

lated to ENSO that shows similar upper level structure as our first S/N-optimal of

the divergence field, but does not seem to be connected to the SACZ variability. We

can assimilate their results with ours as follows. Our results are based on a signal-

to-noise optimization procedure applied to a 5-member ensemble runs to extract the

dominant forced atmospheric response to local SST forcing. Accordingly, our results

should give a better estimate of the forced response in the SACZ region, which is

likely to differ from the leading pattern of internal variability. To check this we cal-

culated the first EOF of the 200 mb wind field of each ensemble member and found

an eddy-like pattern with similar characteristics as the “eddy” structure found in the

first EOF of Robertson and Mechoso [2000]. We then calculated the correlations of

the associated PCs with Niño3 index and found that only two of the five ensemble

members showed significant correlation. This suggests that an eddy-like circulation

may be a preferred mode of internal atmospheric variability at upper levels in the

SACZ region (see also section F.3). This, however, does not mean that SST anoma-
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lies have no impact on the variability of the SACZ. The S/N optimization procedure

filters the internal variability and gives (ideally) only forced patterns. Accordingly,

our first divergence S/N-optimal resembles their second EOF, and not their first one.

Interestingly, these two patterns are very similar in the deep tropical area, but dif-

fer in the extratropics where internal variability is larger, suggesting that the second

EOF of Robertson and Mechoso [2000] includes both forced and internal variability.

This may be the cause why they suggest that their second EOF is not connected to

the SACZ variability, while we showed above that our first divergence S/N-optimal

is indeed associated to precipitation anomalies in the SACZ region.

In terms of mechanisms for local SST influence, we have presented modeling

evidence that the SST anomaly in the South Atlantic can have certain influence on the

SACZ variability, possibly through modifying stability properties of the atmospheric

boundary layer and moisture supply needed for the development of deep convection.

This local oceanic effect appears to operate on interannual-decadal time scales, and

has been found quite localized, with the strongest influence region close to the coast

of southern Brazil where a warm SST tongue exists during the SH summer (Figure

2a). It is possible that the thermal inertia of the ocean may act as a stabilization

mechanism of atmospheric anomalies leading to an increase of their persistence [Blade,

1997]. This implies that the precipitation associated with the oceanic part of the

SACZ region may have some predictability due to the slow SST evolution, but its

land component may be mostly unpredictable. This latter result may be highly model

dependent and sensitive to a different parameterization of land surface processes. It

could also depend on the ensemble size. In the next section we compare a larger

ensemble of SST-forced CCM3 runs to an ensemble of similar runs made with version

1.0 of the AGCM developed at the NASA Seasonal-to-Interannual Prediction Project

(NSIPP-1).
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F. Sensitivity of the results

The objective of this section is to address the reproducibility of the results shown

before. We focus on the locally-forced precipitation signal shown in Figure 7. We

are particularly interested in the extension of the precipitation anomaly toward the

continental part of the SACZ, because it is highly relevant to seasonal climate forecast

in a densely populated area. We shall re-examine the spatial structure of the pre-

dictable precipitation signal and quantify their strength during the peak of the SACZ

in the CCM3 and NSIPP-1 models. Portions of this section have been submitted for

publication [Barreiro et al., 2003a].

Another major goal is to further quantify the potential predictability of the SACZ

region. Identifying a forced response does not necessarily translate into high pre-

dictability, because the strength of the signal may be weak compared to the strength

of the noise. Therefore, it is very important to address the issue of whether the forced

response is likely to dominate the dynamics or not. A first estimate of the percent-

age of precipitation variability due to internal dynamics was calculated in section

C. It was found that approximately 59% of the total variability in the SACZ region

can be attributed to internal variability. In this section we use a different approach.

We define a potential predictability measure as the ratio of the signal variance over

the total variance. We further calculate the modes of precipitation associated with

interannual internal variability. In this way we can compare not only the ratio of

forced versus total variability, but also the spatial structure of internal variability of

the two models. This allows to further compare our results with those of Robertson

and Mechoso [2000]. We found that the precipitation in the SACZ region is largely

dominated by internal variability, and that the leading modes of simulated internal

variability have spatial structures that are similar to the observed leading mode of
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variability in the region, e.g. Robertson and Mechoso [2000].

1. Data sets

To test the sensitivity of the results to ensemble size we consider a 9-member ensemble

of CCM3 integrations. The four new runs of the ensemble were forced with the same

observed SST as the other 5 ensemble members [Smith et al., 1996], and span the

same time period.

To test the sensitivity of the results to the physics of the model we use a 9-member

ensemble of GOGA-type integrations made with the NSIPP-1 model. The NSIPP-1

model is a finite difference model with a resolution of 2.5 degrees in latitude and 2

degrees in longitude with 17 levels in the vertical, e.g. [Suarez and Takacs, Greenbelt,

MD, 1995]. The output of the NSIPP-1 was regridded to a 2.5 x 2.5 grid to compare

better with observations and with CCM3 output. Data for the NSIPP-1 model can

be obtained via the website http://nsipp.gsfc.nasa.gov/main.html. As the CCM3,

the deep convective parameterization used in the NSIPP-1 model is a variant of the

Arakawa-Shubert (AS) [Arakawa and Shubert , 1974] mass flux scheme. However,

instead of using the Zhang-McFarlane scheme, the NSIPP-1 model uses a Relaxed-

Arakawa-Shubert scheme for penetrative convection originating in the boundary layer

[Moorthi and Suarez , 1992]. The main difference with AS is that the state is “relaxed”

toward equilibrium rather than requiring the final state to be balanced. The land sur-

face models (LSM) used in the NSIPP-1 is also different than the one used in the

CCM3 (see section B). The LSM used in NSIPP-1 is a soil-vegetation-atmosphere-

transfer scheme developed by Koster and Suarez [1992, 1996], called MOSAIC LSM.

MOSAIC subdivides each grid square of the atmospheric model into tiles of a sin-

gle vegetation type, and then calculates separate one-dimensional energy and water

balances over each tyle with strong stomatal control over transpiration rates.
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The 9-member ensemble of NSIPP-1 integrations span the period 1930-2000, and

the imposed SST (all in a 2.5 x 2 grid) were given by the Hadley Centre SST data set

during 1930-1948, GISST 2.2 during 1949-1981 (reconstructed using eigenvectors of

in situ observations, Rayner et al. [1996]), and Reynolds Optimal Interpolation SST

v1.0 during 1982-2000 (combines in situ- and satellite-derived SST data, Reynolds

and Smith [1994]). Since the three data sets have different climatologies we calcu-

lated anomalies by removing the corresponding climatology in each of the periods.

This procedure should not affect the results because we will not analyze interdecadal

variability.

In this section we validate model results with the observational rainfall data

set given by the Global Precipitation Climatology Project (GPCP, [Huffman et al.,

1997]), which is on a global 2.5 x 2.5 grid, and spans the time period 1979-2000. The

GPCP data set, as the Xie-Arkin, is derived from satellite- and raingauge-based ob-

servations. The global distribution of rainfall from both data sets matches each other.

However, regional differences arise due to the use of different merging techniques and

components. These differences can be considered as a measure of the uncertainty in

the observations. A comparison between the two data sets can be found in Gruber

et al. [2000].

Figures 13a and 13c show the climatology of rainfall during JFM season for

NSIPP-1 and observations during the common period of 1979-1994, respectively. The

corresponding climatology for the CCM3 is shown in Figure 2a. The connection

of the SACZ with the Amazon convective region is apparent in the observations,

and in the CCM3 model, but is less clear in the NSIPP-1 model. The separation

between the rainfall bands associated with the SACZ and ITCZ is well captured in

the models. However, contrary to observations the NSIPP-1, as the CCM3, tends

to locate the ITCZ’s axis south of the equator, and overestimate rainfall next to the
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coast of Brazil at about 15◦S, resulting in the undersizing of the Atlantic dry zone.

On the other hand, the simulated SACZ does not extend as far southeastward as the

observed one. The GPCP climatology shows a clear discontinuity of the SACZ band

near the coastline which hints that the continental and oceanic parts of the SACZ

do not vary as an integrated structure. This feature is not as clear in the Xie-Arkin

climatology (Figure 2e). The NSIPP-1 model also shows this discontinuity, but is

less obvious in the CCM3. The maximum precipitation in the NSIPP-1 model is over

land, comparing well with observations.

The CCM3 model captures the interannual variability of the SACZ with the

maximum over the continent and extending southeastward over the ocean (Figure 2d).

The NSIPP-1 model, on the other hand, underestimates the precipitation variability

over the continent and shows maximum variance over the oceanic portion of the

SACZ (Figure 13b). The origin of the underestimation of precipitation over land is

uncertain, but is likely related to the parameterization of land surface processes and

their interaction with the atmosphere.

2. Detection of forced response

As in section D, we used the S/N optimization procedure to find the forced signals in

the precipitation. In section D, the first two optimals with maximum signal-to-noise

variance ratio were considered as the forced signals. Here we proceed in a slightly

different manner which is perhaps more accurate and physically more sound: we first

construct a total forced signal by summing up all the optimals that have a S/N-ratio

larger than unity. The dominant forced pattern is then calculated as the first EOF

of the total signal variance (see also Appendix A). The analysis below indicates that

the first EOF of the total signal and the first optimal are very similar in both spatial

and temporal structures. The time series are highly correlated with a correlation
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Fig. 13. JFM precipitation climatology and RMS deviation during the period

1979-1994 for: (a), (b) NSIPP-1 model, and (c), (d) GPCP, respectively.

Contour interval is 2 mm day−1 for climatology (left panels), and 0.5 mm

day−1 for RMS deviation (right panels). The dashed boxes mark the SACZ

region.
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coefficient r larger than 0.95 for the data sets we have considered.

We applied the procedure described above to the precipitation fields of CCM3

and NSIPP-1 models. The analysis is performed over their respective time periods,

that is, 1950-1994 for CCM3, and 1930-2000 for NSIPP-1. We consider a longer

period for the NSIPP-1 to use all the available data, and also because it overlaps the

observational record. The use of NSIPP-1 data only in the common period 1950-1994

does not change the main results. For the CCM3 model the pattern of forced response

in the SACZ region using the 9-member ensemble is very similar to the one calculated

using a 5-member ensemble and shown in Figure 7 (not shown). The associated time

series are highly correlated as well.

Figure 14 shows the dominant forced pattern for the NSIPP-1 model. Anomalies

in the SACZ region are very similar in structure and amplitude to those of the forced

signal found in the CCM3 (see Figure 7c). The response consist of a northwest-

southeast oriented dipole in precipitation anomalies mainly located off the coast of

Brazil, as was found for the CCM3. The northern lobe of the dipole is stronger than

the southern lobe, indicating a northward shift of the SACZ as well as a strengthening

of rainfall in that region. The time series associated with the signals show interannual-

to-decadal time scales and are correlated with r = 0.77 over the common period

1950-1994, which is significant at 99% level.

Regression of SST onto the time series of the forced response reveal that, as

in the CCM3, the enhanced precipitation is located over warm SST anomaly with a

maximum of roughly 0.45◦C at about 20◦S (compare Figure 14b with Figure 7a). The

cross-equatorial SST gradient is consistent with the weakening and southward shift of

the ITCZ seen in Figure 14a (also found in the CCM3). Regression of 1000mb winds

show a cyclonic eddy located over the same region off the coast of Brazil in both

models, as well as northerly flow coming from the equatorial region into the SACZ.
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Fig. 14. (a) Dominant forced signal of precipitation for NSIPP-1 model, shown as a

homogeneous regression map over a larger region. (b) Regression of 1000 mb

winds and SST onto the time series of the forced signal. Contour interval

for the SST is 0.1 K. Shaded areas indicate SST significant at the 95% level.

Only wind vectors where the wind speed anomaly is significant at the 90%

level are plotted. The dashed box in (a) marks the region used to construct

the precipitation index shown in Figure 18c.
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Therefore, despite the different physical parameterizations, both GCMs present a very

similar forced response of the atmosphere to local SST. Anomalies are larger in the

CCM3 in part because the regression for NSIPP-1 encompasses the period 1930-1960

in which the signal was relatively weak.

Figures 15a and 15b show the regression of the net heat flux into the ocean for

both AGCMs (note the similarity between Figure 15a and Figure 7d). Heat flux

anomalies are generally stronger in the CCM3 model. Moreover, model responses

differ in the SACZ region. At about (20◦S, 35◦W) the CCM3 presents a net heat flux

anomaly into the ocean coexisting with positive SST anomalies, suggesting a local

positive air-sea feedback, which is not present in NSIPP-1. On the other hand, both

models tend to suggest a positive feedback between heat fluxes and SST off the coast

of Brazil at about 10◦S. There, the heat fluxes tend to maintain and shift northward

the SST anomaly.

To investigate further we separated the heat flux budget into four components:

shortwave and longwave radiation, and latent and sensible heat fluxes. In both models

the net heat flux (Nhflx) is approximately given by the difference between the down-

ward solar radiation (Sw) and the latent heat flux (Lhflx), i.e. Nhflx � Sw−Lhflx.

The NSIPP-1 model shows a negative anomaly of downward solar radiation at the

same place of increased precipitation, suggesting that the presence of clouds shadows

the surface to incoming energy thus acting as negative feedback (see Figure 15d).

To both sides of the negative anomaly there are areas with increased solar radiation

probably consequence of compensating subsidence which inhibits cloud formation.

The CCM3 shows similar behavior in shortwave radiation except for a region of posi-

tive anomaly next to the coast of Brazil which suggests positive feedback (see Figure

15c). The regression maps of the latent heat flux reveal that both models show neg-

ative anomaly next to the coast of Brazil at about 10◦S. In the CCM3, however, the
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Fig. 15. Regression of heat flux onto the time series of the forced response for the

CCM3 (left) and NSIPP-1 (right) models. (a), (b) net heat flux into the

ocean; (c), (d) downward solar radiation; (e), (f) latent heat flux. Units are

W m−2. The boxes in (a) and (b) mark the SACZ region.
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anomaly extends further south to 20◦S contributing with the solar radiation anomaly

to create the region of positive feedback in the SACZ region mentioned above (see

Figures 15e and 15f). The origin of these model differences is not clear at the mo-

ment, but is expected to be related to the different parameterizations of convection, of

boundary layer processes, and of cloud-radiation interaction. Sensitivity experiments

are needed to further investigate this result.

3. Internal variability

We followed the procedure described in Appendix A to calculate the leading patterns

of internal variability on interannual time scales. The EOF analysis is performed over

the concatenated noise parts of ensemble members to enhance statistical significance.

Figures 16a and 16b show the patterns of the leading EOF of the noise (hereafter

noise-EOF1) for each model. They explain 25% and 32% of total noise variance

in the CCM3 and NSIPP-1 models respectively. The structures of the noise-EOF1

in both models are very similar, mainly showing an enhanced SACZ accompanied

by decreased precipitation to its southwest consequence of compensating subsidence.

There is also a decreased of precipitation in the ITCZ. One notable difference between

the noise patterns is that in the CCM3 the maximum variance is over the continent,

while in the NSIPP-1 the maximum is over the continental part. This difference

in structure mimics differences in maps of RMS deviation (Figures 13b and 13d).

The regression of 200mb winds onto the time series associated with noise-EOF1 in

the CCM3 shows a cyclonic eddy centered at about (45◦W, 30◦S) accompanying a

strengthened SACZ (Figure 17). Thus, the noise-EOF1s tend to have the same spatial

structure as the leading mode of variability in the SACZ region found in Robertson

and Mechoso [2000] using the NCEP-NCAR Reanalysis data set.

They also found that this mode is largely due to internal variability of the atmo-
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Fig. 16. The dominant mode of internal variability for precipitation (noise-EOF1) in

(a) CCM3, and (b) NSIPP-1 models. Contour interval is 0.2 mm day−1.

sphere, which agrees with our findings, and that the associated time series contains

a periodic component of 15-17 years. The time series of the noise-EOF1s, however,

have very large within-ensemble variability, showing almost no significant correlation

between time series of different ensemble members (as expected for noise). Thus, it

suggests that the leading noise patterns have no preferred time scale. As mentioned

above the EOF technique used in Robertson and Mechoso [2000] is not designed to

separate forced from internal variability, but to maximize explained variance. Thus,

although largely due to internal variability, their leading mode will likely include also

a component from forced variability, which may explain the significant periodic com-

ponent in the associated time series. Also, as Robertson and Mechoso [2000] pointed

out, the 40-year time series they used in their study is too short to conclusively reject

the null hypothesis that the periodicity arises from random sampling variations.
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Fig. 17. Regression of 200mb winds onto the time series associated with the

noise-EOF1 of CCM3.

4. Potential predictability analysis

The previous sections have focused on the temporal and spatial structures of the forced

and internal variability of the precipitation in the SACZ region. In this section we

investigate the issue of how predictable the precipitation is, and where the predictable

region lies, assuming that SST is known in advance.

To do so we constructed the potential predictability index PP as described in

Appendix A, that is, PP = σ2
s/σ

2
t , where σ2

s is the variance of the signal and σ2
t

is the total variance. Regions where PP > 0.5 are those where prior knowledge of

the surface oceanic conditions may allow the prediction of precipitation anomalies in

advance.

Several approaches have been developed to measure potential predictability us-

ing an ensemble of climate simulations. Some approaches define a coherence index

which “reflects the ability of the SSTs to guide the time sequencing of precipitation

anomalies” [Koster et al., 2000], whereas others are based on “Analysis of Variance”

(ANOVA) methods, e.g. [Rowell , 1998]. Estimates of potential predictability have
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usually been of global extent, and have not focused on the SACZ region. Moreover,

while ANOVA is a useful indicator of SST influence, it does not take into account

of correlations between grid points, which may lead to the erroneous conclusion that

there are no SST effects. The measure of potential predictability used here explicitly

accounts for correlation between neighboring points because it constructs the total

signal as the sum of optimal structures calculated in the SACZ region. A weak-

ness of the technique to estimate PP is that the construction of σ2
s depends on the

truncation of the optimals. In this work we used S/N-ratio larger than unity as a

criterion for truncation. This choice of truncation is somewhat arbitrary and does

not give a measure of the bias in the estimation of the true signal. This methodology

of truncation may led to an under or overestimation of the true signal. Thus, there

is no obvious way to calculate the statistical significance of PP . To partially address

this issue we compare PP with the estimate of potential predictability given by a

1-way ANOVA model (PPA), in which the significance level can be computed. The

main idea of ANOVA is as follows: Assuming that the SST-forced variability and the

internal variability are independent, ANOVA tests for the significance of SST effects

on a certain atmospheric variable comparing the variance of the ensemble mean with

the variance of the deviations from the ensemble mean (noise variance) at each grid

point. The signal variance is estimated as the variance of the ensemble mean biased-

corrected to account for a finite ensemble size. The potential predictability estimate

is then computed as the ratio between the signal variance and the total variance (sum

of signal and noise variances). Appendix A presents a summary of the ANOVA results

used here, and provides references on the technique.

Figures 18a and 18b show the potential predictability measure PP for each

model. Overall both models agree in that the variance of the predictable signal

explains less than 10% of total variance over the continent, and that it is significantly
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larger over the oceanic portion of the SACZ, mainly to the north of the SACZ’s cli-

matological axis. However, the potential predictability in the CCM3 model is larger

than in the NSIPP-1 model in spite of the fact that the forced signals in both models

are of about the same amplitude This is also true when considering the NSIPP-1 out-

put during the period 1950-1994 only, although PP increases. The reason is related

to the structure of the noise in the models. In the CCM3 the noise-EOF1 has largest

variability over the land and not so strong over the ocean. In the NSIPP-1, on the

other hand, the noise-EOF1 has largest loading over the oceanic part of the SACZ,

thus hindering the forced response.

Estimates of potential predictability given by ANOVA (PPA) are very consistent

with those of the PP index (Figures 18c and 18d). They also tend to agree with

the results of Rowell [1998], and of Koster et al. [2000] despite the slightly different

season considered (they used December-January-February). Nevertheless, ANOVA

estimates are larger for both models, particularly for the NSIPP-1, showing that PP

gives a conservative estimate of the potential predictability.

Figures 18a and 18b indicate that over the ocean the predictable variance has a

maximum value of about of 60% of total variability, but the mean over the ocean is

considerably smaller than that. This suggests that the internal variability dominates

in the SACZ region in agreement with previous estimates of section C, and with results

of Robertson and Mechoso [2000]. The signal variance accounts for a relatively large

portion of the total variance only in the positive lobe of the forced precipitation

dipole pattern, and the maximum is shifted further away from the coast compared

with Figures 7c and 14a, due to the extension of the noise variance toward the ocean.

The above results suggest that the ocean surface is a source of potential pre-

dictability to the oceanic portion of the SACZ. Also, they indicate that it is in that

region where the forced signal shown in Figure 14a is likely to be an important player
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Fig. 18. Estimates of potential predictability given by PP index for (a) CCM3 and (b)

NSIPP-1 models; and given by ANOVA (PPA) for (c) CCM3 and (d) NSIPP-1

models. For PPA contours larger than 0.1 are significant at 99% level. The

dashed box in (b) marks the region used to construct the precipitation index

shown in Figure 14a.
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Fig. 19. Time series of forced response in NSIPP-1 (solid line) and time series of the

precipitation index in the observations (dashed line). Shading shows the dis-

persion of the index for precipitation calculated for all NSIPP-1 ensemble

members (see text).

in the dynamics. These results, however, are derived based on ensembles of model

simulations, and do not address directly the issue of how skillful these models are in

simulating/predicting observed rainfall in the region on interannual time scales. To

address this issue we constructed a precipitation index as an average over the area

shown in Figure 18b. The choice of the area is based on the criterion that the forced

variance must explain at least 30% of the total variance in both models. The southern

limit is defined by the axis of the forced precipitation dipole (see Figure 14b). Also,

note that the area follows the shape of the positive lobe in the precipitation dipole

and that it contains the region of maximum amplitude.

Figure 19 shows the index for the observational data set (dashed line) together

with the time series of the forced response for the NSIPP-1 (solid line). The shaded

region denotes the dispersion of the precipitation index calculated for the ensemble

members. As expected due to the relatively large noise variance in the region, the

index shows large intra-ensemble dispersion. Note that the dispersion interval almost

always contains the time series of the forced response. The index for the observations
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also generally lies within the dispersion of the ensemble members, suggesting that

the model simulates well the precipitation variability in the region. Moreover, the

observed precipitation index shows a correlation of 0.45 with the time series of the

forced response during the period 1980-2000, which is significant at the 95% level.

These results suggest that the forced response of the precipitation to SST anomalies

is present not only in the models, but also in the real atmosphere. However, this also

suggests that the forced signal is weak and its manifestation is confined away from

the coast where internal atmospheric dynamics is weaker.

G. Summary

In this first part of the dissertation we studied the interannual and decadal variability

of the SACZ during austral summer (JFM season). An attempt is made to separate

the forced variability from the internal variability. This is accomplished by applying

a signal-to-noise optimization procedure to an ensemble of multi-decadal integrations

of the latest version of the NCAR Community Climate Model (CCM3) forced with

observed SST. The result yields two dominant forced atmospheric responses: a local

response to Atlantic SST anomalies with interannual-decadal time scales and a remote

response to Pacific SST anomalies at interannual time scales. The latter manifests

itself mainly in the upper level circulation, consisting of a northeastward shift of the

SACZ with associated rainfall anomalies during warm ENSO events.

The precipitation response to local SST anomalies is localized within the South

Atlantic Ocean with almost no signal over land, consisting of a dipole-like structure

in precipitation close to the coast of South America accompanied by a clockwise

anomalous circulation of surface winds. The sensitivity of this precipitation response

on model physics was investigated by comparing the output of the NASA/NSIPP-
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1 model with that of the CCM3. We found that despite the different convective

and land-surface parameterizations, the two models consistently show an SST-forced

signal located mainly over the oceanic portion of the SACZ, consisting of a shift

and strengthening of the SACZ towards anomalous warm waters. We suggest the

following mechanism to explain the forced signal: a positive SST anomaly forces

the atmosphere, generating a low level hydrostatic cyclonic eddy next to the coast

of South America. A northerly flow coming from equatorial regions, probably as

response to the tendency of having warmer SST anomalies to the south of the equator,

is also present, thereby, bringing enhanced moisture to the area. This anomalous

circulation creates a convergence in the northern part of the SACZ, causing increase

in precipitation. Compensating subsidence forms to its southwestern flank and creates

a negative precipitation anomaly, which may further be reinforced by the low moisture

southerly flow.

The leading mode of precipitation associated with the internal variability on

interannual time scales is also calculated. Its structure is somewhat dependent on the

model, but it tends to show an enhanced SACZ accompanied with decreased rainfall

over southern Brazil, Uruguay and northern Argentina (or vice versa). This structure

is very similar to the leading pattern of observed vertical velocity found in Robertson

and Mechoso [2000].

A potential predictability analysis reveals that the maximum predictable variance

in the SACZ region is about 50% of the total SACZ variance over the ocean, but the

signal attenuates rapidly towards the South American continent. This feature is

found in both the CCM3 and the NSIPP-1 models, and implies that the land portion

of the SACZ is primarily dominated by the internal variability, thereby having a

limited potential predictability at seasonal time scales. Accordingly, the only hope

for prediction beyond the one-to-two weeks limit imposed by the chaotic atmospheric
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dynamics may rely on the foreknowledge of the land surface moisture state [Koster

et al., 2000]. The coastal region may still have some predictability associated to SST

anomalies, which needs to be addressed using regional high resolution models with

improved land physics and convective parameterizations.
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CHAPTER III

ON THE ROLE OF THE SOUTHERN HEMISPHERE ATMOSPHERIC

CIRCULATION IN TROPICAL ATLANTIC VARIABILITY

A. Introduction

The variability associated with an anomalous hemispheric SST gradient coupled to

a cross-equatorial atmospheric circulation and the displacement of the ITCZ during

the boreal spring (March-April-May, hereafter MAM) has long been recognized as

one of the most important components of Tropical Atlantic Variability (TAV), e.g.

[Hastenrath, 1985]. This pattern of variability, which we refer to as the gradient

mode, is shown in Figure 20. Clearly, rainfall over the north Northeastern region of

Brazil is highly affected by this mode. Understanding and predicting the onset and

development of this phenomenon is one of the central focuses of TAV research.

Hastenrath and Greishar [1993] proposed the following mechanism for the cou-

pling between SST, winds and convection [Chiang et al., 2002]: an anomalous cross-

equatorial SST gradient generates surface winds from the cooler to the warmer hemi-

sphere through the hydrostatic effect of SST on sea level pressure [Lindzen and Nigam,

1987]. Afterward, the anomalous cross-equatorial winds will in turn influence the po-

sition of convection. This causal linkage was later supported by observational studies

[Ruiz-Barradas et al., 2000], and modeling studies [Chang et al., 2000]. The ob-

served seasonality of this coupling is believed to be a result of the spatially uniform

warm climatological SST condition in boreal spring that makes the Atlantic ITCZ

highly sensitive to perturbations in the meridional direction [Chiang et al., 2002].

These authors also argued that during this season even a small pressure gradient

can drive significant cross-equatorial flow. The original SST anomalies that force the
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Fig. 20. The gradient mode of variability during boreal spring, calculated as the lead-

ing joint SVD of surface wind speed and SST from 1982 to 2000. The con-

tours show the SST anomalies (contour interval is 0.1K). Arrows depict the

NCEP-NCAR 925mb winds. The filled contours depict the regressed precipi-

tation (from Xie-Arkin) in units of mm day−1.
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atmosphere have been shown to be preceded by changes in the trade wind system,

indicating an atmospheric origin for the SST anomalies Carton et al. [1996]; Nobre

and Shukla [1996].

These findings have resulted in two main paradigms for this phenomenon. Based

on modeling and observational studies some investigators have proposed that the gra-

dient mode can be explained by a merely passive response of the ocean to atmospheric

forcing [Dommenget and Latif , 2000; Seager et al., 2000]. The SST anomalies cre-

ated by wind-induced heat fluxes will afterward force the atmosphere. Other studies,

trying to explain a decadal spectral peak of the gradient mode suggest that there

exists a positive air-sea feedback between the SST and the wind-induced heat fluxes,

sometimes referred to as the wind-evaporation-SST (WES) feedback [Chang et al.,

1997; Xie, 1999]. This feedback is thought to work as follows: as the SST-driven sur-

face winds cross the equator they change direction due to the action of the Coriolis

force such that they tend to reinforce (weaken) the trade winds of the cold (warm)

hemisphere. Thus, they enhance the heat flux anomalies that induced the original

SST anomalies, leading to a positive feedback loop. Chang et al. [2000, 2001] recently

proposed an alternative hypothesis that acknowledges the importance of remote forc-

ing as well as of local air-sea feedbacks. In that view the gradient mode is a damped

mode forced by atmospheric variability and the positive feedback between SST and

heat flux operates only between about 15◦S and 15◦N. Observational evidence of the

positive air-sea feedback can be found in Chiang et al. [2002]; Czaja et al. [2002].

The importance of the existence of a positive feedback cannot be overstated,

because its existence may be very important for extending the dynamical seasonal

prediction in the Atlantic region. From the above discussion, it is also clear that iden-

tifying and understanding sources of the origin of the SST anomalies are important

aspects of TAV research. Among the known sources of the origin of SST anomalies
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in the tropical Atlantic are ENSO in the equatorial Pacific, e.g. [Curtis and Hasten-

rath, 1995; Enfield and Mayer , 1997], and the NAO in the northern extratropics, e.g.

[Marshall et al., 2001]. Both of these phenomena reach their full strength during the

boreal winter, thereby affecting the formation of the SST gradient during the boreal

spring. Studies show that these remote influences are mostly confined to the Tropical

North Atlantic (TNA). According to Chang et al. [2001] these remote influences play

an important role in exciting local air-sea feedbacks in the deep tropical Atlantic

region.

The impact of ENSO on TAV is well documented [Enfield and Mayer , 1997;

Saravanan and Chang , 2000]. The wind-induced latent heat flux change in the TNA

region associated with ENSO has been identified to be a plausible mechanism: During

warm ENSO events diabatic heating anomalies in the eastern tropical Pacific cause

the northeasterly trades in the tropical Atlantic to weaken during boreal winter. As

a result of the reduced strength in the trades, the evaporational heating decreases,

which in turn causes the SST in the TNA to warm up. Chiang et al. [2002] and

Giannini et al. [2001] show that ENSO generally tends to aid the development of an

SST gradient in the following spring. However, the anomalous gradient can also form

without the presence of ENSO, as demonstrated by Chiang et al. [2002]. This latter

result underlies the importance of local feedbacks. In fact, a recent study by Giannini

et al. [2003] suggests that the local feedbacks can interfere with the remote influence

of ENSO.

The effect of NAO on TAV has also been previously noted, e.g. [Visbeck et al.,

1998]. The NAO is the dominant mode of internal atmospheric variability (IAV)

during winter of the Northern Hemisphere (NH), and its primary forcing mechanism

is thought to be eddy-mean flow interaction on synoptic time scales [Marshall et al.,

2001]. The oceanic response to the NAO forcing consists of a tripole pattern of SST
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anomaly, extending from the high latitudes of the North Atlantic to the northern

tropics with decreasing amplitude. The maximum SST anomaly lags the NAO forcing

by approximately a season and occurs during MAM. The southernmost lobe of the

tripole occupies a large portion of the TNA where trade wind changes consequence of

sea-level pressure fluctuations associated with the NAO are presumably responsible

for the generation of the SST anomaly via latent heat flux. One interesting feature

noted from both an observational analysis [Czaja et al., 2002] and a modeling study

[Chang et al., 2001] is that the SST anomaly generated by the NAO appears to be

largely confined to the north of the equator with largest SST anomaly north of 10◦N.

To date, the possibility of a southern hemispheric origin of SST anomalies in the

tropical Atlantic has not been explored. During austral winter (June-July-August,

hereafter JJA) the Atlantic subtropical anticyclone in the SH is most energetic [Satya-

murty et al., 1998], and is located in its westernmost and northernmost position [Has-

tenrath, 1985]. Therefore, variability in the subtropical high during this season is most

likely to have an influence in TAV. Venegas et al. [1997] found that the leading mode

of observed coupled atmosphere-ocean variability in the South Atlantic consists of a

weakened/strengthened subtropical anticyclone forcing the ocean. In this chapter we

will take a further look at the variability in the South Atlantic during austral winter,

and investigate how the changes induced by internal atmospheric variability can force

the ocean below, and consequently influence the onset and development of the gra-

dient mode. We analyze both observations and an ensemble of AGCM simulations.

Portions of this chapter have been submitted for publication [Barreiro et al., 2003b].

The chapter is organized as follows. In sections B and C we motivate the dis-

cussion by describing the observed evolution of SST and circulation anomalies during

non-ENSO years characterized by significant TAV in MAM. Composites show that the

anomalous spring gradient is preceded by SST anomalies in the southern subtropics
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created during the previous austral winter. In section D we describe the model used

to further investigate the influence of the Southern Hemisphere (SH) IAV on TAV. We

describe the evolution of simulated SST anomalies generated by IAV during austral

winter, and propose a mechanism to explain its influence on TAV. To compare with

the remote SH winter influence on TAV, we review the evolution of SST anomalies

induced by the NAO in the context of our model. Section E summarizes the results,

and the last section discusses implications of our findings.

B. Evolution of the gradient mode from observations

1. SST evolution

To investigate the linkage between the Atlantic gradient mode during boreal spring

and the SH atmospheric variability, we first performed a composite analysis based

on the reconstructed SST data set of Smith et al. [1996]. The data has a spatial

resolution of approximately 2.8 degrees and spans from January 1950 to December

1994. All data sets considered in this study were linearly detrended prior to analysis.

To track the SST evolution that leads to the gradient development during MAM, we

first derived seasonally averaged SST anomalies. We then constructed the composite

of the SST anomalies for MAM (when the gradient is at its peak) and three seasons

prior to that. Therefore, our composite calendar begins in the boreal summer June-

July-August of year 0 (JJA0), and ends in the March-April-May season of year +1

(MAM+1). This results in a record of 44 years of SST anomalies, starting in JJA of

1950 and ending in MAM of 1994.

Since our focus is on the remote influence from the extratropics, we remove

ENSO influences by eliminating all the years when there is an ENSO event in the

tropical Pacific. These years are defined as those when the December0/January+1
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Niño3.4 index (the average of SST anomalies in (120 − 170◦W,5◦S−5◦N)) is larger

than 0.75◦K. This classification leads to the following warm events: 1958, 1966, 1969,

1970, 1973, 1983, 1987, 1988, 1992, and the following cold events: 1951, 1955, 1956,

1965, 1971, 1974, 1976, 1985, 1989 (years refer to the January+1 month). We remove

these 18 ENSO years from the data set, and only keep the remaining 26 non-ENSO

years for the analysis.

Non-ENSO years were further classified according to a gradient index (GI), which

characterizes the strength of the cross-equatorial SST gradient in MAM+1. The GI is

defined as the difference between averages of SST anomaly in the regions (4◦ − 14◦N,

60◦−30◦W) and (4◦−14◦S, 40◦−10◦W ). Other authors have considered indices over

larger regions, e.g. [Chiang et al., 2002], to characterize the SST gradient. Although

results do not change substantially, we choose to consider regions in the deep tropics

because it is here that an SST gradient can strongly influence the ITCZ position.

Throughout this study we refer the region (4◦ − 25◦N, 60◦ − 15◦W) as the tropical

North Atlantic, and the region (4◦−25◦S, 15◦−45◦W) as the tropical South Atlantic

(TSA).

We define positive/negative gradient years as those having a GI exceeding the

standard deviation, that is, GI≥| σ | (where σ is the standard deviation of the time

series excluding the ENSO years). Note that negative (positive) years correspond

to a situation in which SST anomalies are warmer (cooler) south of the equator.

Remaining years are classified as neutral. According to this classification, there are 5

positive gradient years (1978, 1979, 1980, 1981, 1993) and 4 negative gradient years

(1964, 1975, 1984, 1986) in the observed record. The positive gradient years overlap

substantially with the ones chosen by Chiang et al. [2002] for their gradient composite.

Assuming that the coupled system’s response is linear, we further consolidate the

anomalies by taking the difference between negative years and positive years with the
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sign of the composites so chosen that SST anomalies are positive in the SH. These

composites are referred to as the “backward composites” because the composite be-

gins in MAM+1 and we track the origin of the anomalies back to June-July-August

of the previous year (JJA0). Figure 21 shows the results for the seasons JJA0,

September-October-November (SON0), December-January-February (DJF+1), and

March-April-May (MAM+1). Statistical significance at the 95% level, indicated by

the shading, was computed by applying a two-sided Student’s t-test. As can be seen,

the SST dipole observed in MAM+1 (bottom panel) is clearly preceded by an SST

anomaly localized in the southern subtropics at about 15◦S. This SST anomaly orig-

inates in JJA0, grows in magnitude and “tends to move” equatorward with time. In

the following section, using a modeling approach, we show that this apparent “move-

ment”, or equatorward “propagation”, is the result of thermodynamical damping of

subtropical SSTs and the excitation of TAV in the deep tropics that maintains SST

anomalies there. In DJF+1 a negative SST anomaly begins to develop in the TNA,

which peaks in the following season. The tripole observed in the North Atlantic re-

gion suggests that the NAO is, at least partially, responsible for the SST anomaly in

the TNA. Note that SST anomalies in the TSA are larger than in the TNA before

MAM+1.

The fact that large SST anomalies in the TSA region precede a strong cross-

equatorial SST gradient suggests that a linkage may exist between the SH winter

atmospheric variability and the onset of the anomalous gradient. This points to a

potentially important role of the SH atmospheric variability in TAV.

2. Surface circulation

To look at the surface circulation associated with the development of the gradient

mode we constructed a “backward composite” based on the 925mb winds taken from
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Fig. 21. Composites of observed SST, constructed as the difference between nega-

tive and positive years of the GI. (a) JJA0, (b) SON0, (c) DJF+1, and (d)

MAM+1. Contour interval is 0.1K, and shading indicates statistical signifi-

cance at 95% level. Boxes indicate the regions used to construct the GI.
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NCEP-NCAR Reanalysis data set, for seasons JJA0 to MAM+1 using the same

years as for the SST in Figure 21. Figure 22 shows that during SH winter and

spring (JJA0 and SON0) there is a cyclonic circulation with westerly winds north

of � 30◦S coexisting with warm SST anomalies below, consistent with the notion of

atmosphere-to-ocean forcing through decreased heat fluxes. During NH winter the

signature of NAO on surface winds is evident, while in the SH wind anomalies are no

longer significant. In MAM+1, as expected, strong cross-equatorial winds accompany

the cross-equatorial gradient of SST.

This result suggests that atmospheric variability may be responsible for the SST

anomaly that develops in the TSA during JJA0 and SON0 and that precedes the

dipole in MAM+1. It also points out the seasonality in the relevance of atmosphere

forcing in TAV: during austral winter and spring the SH atmosphere forces the south-

ern tropics, while during boreal winter the NH atmosphere forces the northern tropics.

This is consistent with the notion that during these seasons the subtropical highs are

closer to the equator and can influence the tropical regions. In this work we focus

primarily on the IAV during the winter of each hemisphere, because it during this

season that the IAV is most energetic and is more easily isolated from SST-forced

signals. This is particularly true for observations due to the shortness of the record.

To further delineate the linkage between atmospheric variability in the SH and

SST anomalies a number of important issues must be addressed: 1) Does the IAV

during winter indeed force SST anomalies? If so, what is the evolution of these SST

anomalies? Can an SST anomaly in the TSA alone excite TAV and create an SST

dipole? 2) What are the relative contributions of the SH/NH winter atmospheric

circulations to TAV?
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Fig. 22. Composite of observed 925 mb winds, constructed as the difference between

negative and positive years of the GI. (a) JJA0, (b) SON0, (c) DJF+1, and

(d) MAM+1. Shading indicates statistical significance at the 95% level.
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C. Observed SH winter atmospheric circulation

In an attempt to look into the first issue, we calculated the EOFs of observed sea

level pressure taken from NCEP-NCAR Reanalysis data set. The EOF analysis was

performed in season JJA over the region (0◦−50◦S, 70◦W-30◦E). Only the non-ENSO

years were included in the EOF analysis to avoid contamination from ENSO events;

thus, EOFs are likely to represent mainly the IAV during the austral winter. The

leading EOF explains 40% of the total variance, and is shown in Figure 23a as a

homogeneous regression map over a larger region. The pattern resembles a wave

of wavenumber 3 spanning the middle latitudes of the SH. In the South Atlantic

sector, the EOF represents a weakening/strengthening of the subtropical high. A

weakened/strengthened subtropical high means decreased/increased southern trades

(see Figure 23b), which may change the SST below through anomalous heat fluxes. As

shown in Figure 23b by compositing the extreme (larger than one standard deviation)

years based on the time series of the leading EOF of the sea level pressure, the wind

anomalies are strong south of 10◦S. The anomalous circulation patterns in Figures

22a and 23b are similar, both consisting in a cyclonic circulation with westerly winds

north of 30◦S. This finding lends support to the idea that the SST anomaly in the

subtropical South Atlantic that precedes the gradient mode is generated by the IAV

during austral winter.

As mentioned in the introduction, Venegas et al. [1997] found that the leading

mode of coupled atmosphere-ocean variability in the South Atlantic basin consists of

a weakened/strengthened subtropical anticyclone forcing the ocean. The associated

time series has decadal time scales, and the corresponding oceanic response to the

atmospheric forcing consists of an SST dipole with a node at about 25◦S. Results

here suggest that the atmospheric counterpart of Venegas et al’s coupled mode may
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Fig. 23. (a) Spatial pattern of the leading mode of observed sea level pressure in JJA

season, shown as a homogeneous regression map over a larger region. The

dashed box marks the region in which the EOF analysis was performed. Con-

tour interval is 20 Pa. (b) Composite of observed 925 mb winds constructed as

the difference between positive and negative extreme years of the time series

associated with the leading mode of observed sea level pressure.

be related to the pattern generated by IAV.

1. Evolution of SST anomalies forced by SH winter atmospheric circulation

We next study the evolution of SST anomalies created in the TSA by IAV during

austral winter. To do so, we constructed composites for seasons JJA0, SON0, DJF+1

and MAM+1 taking as index the principal component of the first EOF of sea level

pressure shown in Figure 23a. The extreme years identified and used in the composite

were (1952, 1979, 1993) and (1960, 1962, 1963, 1964, 1986) when the sea level pressure

was anomalously high and low respectively (years refer to MAM+1). We call this

composite the “forward composite” in contrast to the backward composite shown in

Figure 21, because it begins from austral winter (JJA0) and ends the following fall

(MAM+1). Results are shown in Figure 24. Although anomalies are generally weaker



79

in the forward composite, the shape and evolution of SST anomalies in the SH are very

similar to the ones in Figure 21. Figure 24 reveals that the maximum SST anomaly

occurs during SON0, after which it weakens in the subtropics (presumably by heat flux

damping), whereas in the deep tropics SST anomalies tend to persist longer (although

they are just significant at 95% level). In the following boreal spring, a dipole is

generated with weak anomalies in the northern tropics. Statistically significant low-

level northerly cross-equatorial winds accompany the SST gradient during this season

(not shown), indicating that even weak SST gradients can generate an atmospheric

response in the deep tropics (as in Chiang et al. [2002]).

The tripole of SST anomalies in the NH is weaker than in Figure 21. According

to the classification of Czaja et al. [2002], among the eight extreme years used in the

composite, only one coincides with a strong NAO year that tends to generate in the

TNA SST anomalies of opposite sign from those already existent in the TSA. Thus, it

is unlikely that the NAO is completely responsible for the SST dipole. These results

suggest that an SST anomaly created during austral winter in the southern subtropics

may be able, by itself, to induce a dipole in the following MAM season.

A particularly important feature that is evident from the composites is that SST

anomalies tend to persist for a long time in the region (5◦-20◦S) from the coast of

Brazil to 10◦W. To better quantify this assertion we calculated the decorrelation

time scale of SST anomalies as given by the characteristic time scale of a first order

autoregressive process fitted at each grid point. We found that in this region the

decorrelation time scale is from 6 to 9 months. One possible reason for the long

persistence is that the ocean mixed layer is relatively deep for a tropical mixed layer,

having an annual mean of about 40 meters.

The composite analyses presented in this section were based on a very small

sample of years because of the shortness of the observational record. Therefore, sta-
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Fig. 24. Forward composite of SST for extreme years of the leading mode of observed

sea level pressure in JJA. (a) JJA0, (b) SON0, (c) DJF+1, and (d) MAM+1.
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tistical robustness becomes an issue, making it difficult to draw a definite conclusion.

Moreover, it is impossible to clearly isolate the SH influence from the NH based on

such a small sample size, and the “forward composite” is likely to include the NAO

influence.

To further look into these issues, we turn to AGCM simulations. Since we are

looking for the response in the tropical Atlantic to forcing due to IAV, a large enough

ensemble of AGCM simulations should allow for a clean separation of the SH remote

influence from the NH influence. In the following section, we present results based on

an ensemble of runs using an AGCM coupled to a slab ocean. This coupled system

allows thermodynamic air-sea interactions and thus is capable of presenting variability

with the same characteristics as the gradient mode.

D. Analysis of simulations of an AGCM coupled to a slab ocean

1. Model description and experimental design

The AGCM used is the CCM3 model described in Chapter II. Here the CCM3 is

coupled to a slab ocean model with annual mean mixed layer depth [Levitus , 1994].

The coupling is performed everywhere outside of the tropical Pacific (from 18◦S to

18◦N) where observed SST [Smith et al., 1996] is imposed as the boundary condition.

Thus, the model generates its own SST in the tropical Atlantic by thermodynamic

coupling between the atmosphere and the slab ocean. To assure the correct simulation

of the annual cycle of SST the slab ocean uses a Q-flux correction that accounts for

the missing climatological ocean dynamics in the model. We refer to this simulation

as a POGA-ML experiment, following the terminology of Lau and Nath [2001]. It is

worth pointing out that since the slab ocean does not contain any explicit dynamics,

it is expected that it will tend to exaggerate the importance of feedbacks between SST
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and surface heat fluxes. Thus, results presented here have to be further investigated

using a more comprehensive ocean model.

We constructed a 12-member ensemble of POGA-ML runs spanning the period

from January 1950 to December 1994. This large ensemble of integrations allows the

application of the signal-to-noise optimization technique to separate forced (from the

Pacific Ocean) and IAV in the winter season of both hemispheres.

2. Reproduction of observations

In this subsection we validate the model against observations by repeating on model

output the analysis shown in Figure 21. We show that the simulation reproduces the

evolution of observed anomalies, suggesting that the simple coupled model is a useful

tool to study TAV.

As in the observational analysis, we first partitioned the model SST output into

ENSO and non-ENSO years. Once the ENSO years are removed from the data set,

we classify the non-ENSO years according to the modeled GI. It is important to keep

in mind that whereas ENSO years are the same for observations and all ensemble

members, positive/negative gradient years can vary from one ensemble member to

another, and do not necessarily coincide with observed positive/negative years. This

is because TAV can be excited by IAV, and IAV is chaotic in nature. This means

that although the statistics of IAV is the same in all ensemble members, the actual

realizations differ from one run to another due to different initial conditions in each

run.

Figure 25 shows the composites constructed considering the positive and negative

gradient years over all ensemble members. Clearly, the simulated behavior of SST

and wind stress is very similar to observations. The SST anomaly in the TSA seems

to originate in JJA0 due to the subtropical branch of an eddy-like circulation and
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the maximum “moves” towards the equator with time. In DJF+1 the NAO influence

manifests itself as an SST tripole in the North Atlantic, with its southernmost lobe

generating negative SST anomalies in the TNA. In the SH, on the other hand, there

are no significant circulation anomalies. In agreement with observations, the tropical

SST gradient is maximum in MAM+1, and is accompanied by a large cross-equatorial

surface flow. It is interesting to note that during SON0 the circulation anomalies

occupy all the tropical region, and are likely to include both IAV during the season as

well as a response of the atmosphere to the SST anomalies created the season before

(see also next section). The model reproduced the seasonality of IAV forcing the TAV

seen in observations: Tropical SSTs in the boreal spring are only influenced by SH

extratropical atmospheric anomalies during the previous austral winter and spring.

The simulated results in Figure 25 are statistically more significant than the

observed results in Figure 21 because the record is 12 times longer. We conclude

that the model captures realistically the evolution of SST anomalies in the tropical

Atlantic, and thus proceed to further analyze the model output to shed light on the

issues raised in the previous section.

3. SH Winter IAV as an external forcing to TAV

In this section we corroborate the conjecture from observational analysis that the SH

winter IAV can generate a subtropical SST anomaly that subsequently evolves into

an SST gradient in the following boreal spring.

a. Separation of IAV from Pacific-forced variability

The internal variability of the SH atmosphere during local winter is isolated using the

signal-to-noise optimization technique described in Appendix A. In the methodology,

the time evolution of a simulated model variable is divided additively into two parts:
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Fig. 25. Composites of model SST (left panels) and wind stress (right panels), accord-

ing to simulated GI. Contour interval is 0.1 K for SST, and arrow scales are in

Nm−2. Shading indicates regions where either component of the wind stress

is significant at 95% level.
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an internal part due to intrinsic atmospheric dynamics (or IAV), and an external part

due to imposed boundary conditions (forced variability). Here the goal is to separate

the IAV from the ENSO-forced signal in the Atlantic basin. The IAV is constructed

as the residuals of removing the forced signal (which is common to all ensemble

members) from each ensemble member. In principle, the residuals may represent not

only IAV, but also ocean-atmosphere coupling within the Atlantic basin. We assume

that in winter the subtropical and extratropical atmosphere force the ocean but are

not sensitive to the SST anomalies, and therefore the residuals are considered as only

IAV. This is a good assumption because it is during winter that the IAV is largest.

During the other seasons this assumption may not hold, and the residuals may include

atmosphere-ocean coupling. An EOF analysis performed on the residuals provides

the spatial structures and temporal evolution of the dominant modes of winter IAV

in the model. Here we performed this analysis over the concatenated residuals of

the surface pressure field from all the ensemble members over the region (50◦-0◦S,

70◦W-30◦E).

b. Forcing of the South Atlantic by IAV

Figure 26a shows the dominant mode of IAV in the South Atlantic (hereafter referred

to as model-EOF1) as a homogeneous regression map over the globe. It explains 37%

of total internal variability, and is very similar to the leading EOF calculated using

the observed sea level pressure and shown in Figure 23a. This lends support to our

previous assumption that the first observed EOF of sea level pressure represents IAV

during the austral winter. The time series associated with model-EOF1 shows large

within-ensemble variability, and no particular time scale (Figure 26b).

We form a “SH winter index” by concatenating the twelve PC time series as-

sociated with the model-EOF1 shown in Figure 26b, and use it to characterize IAV
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Fig. 26. (a) Spatial pattern, and (b) time series for the leading mode of IAV in the

model during JJA. The dashed box marks the region in which the analysis

was performed. Contour interval is 20 Pa, and shading indicates statistical

significance at 95%.

during austral winter. Years with amplitude larger/smaller than +σ/−σ (with σ the

standard deviation of the SH winter index) are classified as positive/negative years.

The composite of positive minus negative anomalies represents a situation in which

the subtropical high is anomalously weak, allowing direct comparison with results of

the previous sections.

To study the air-sea interaction in the tropical-subtropical Atlantic region we

constructed composites for the SST, wind stress and net surface downward heat flux.

To avoid contamination from the NH, we removed the extreme NAO years (when

the NAO index is larger than one standard deviation, see below) that create SST

anomalies in the TNA of opposite sign as those created in the TSA by the IAV during

JJA. Composites are shown in Figure 27, and they depict the scenario explained

below.

In JJA0, consistent with a weakened subtropical high, we observe a southeast-

ward wind stress anomaly in the SH subtropics mainly south of 10◦S. This wind
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heat flux (right panels) constructed as the difference between positive and

negative years of the SH winter index. In left panels arrow scales are in

Nm−2, and shading as in Figure 25.
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anomaly induces a large net downward heat flux anomaly, which produces a warm

SST anomaly north of 30◦S. A cold SST anomaly south of 30◦S is also created by

the wind-induced heat fluxes. The positive SST anomaly has the same shape seen

in Figures 21 and 24, and attains its maximum magnitude off the coast of Brazil at

about 20◦S in SON0. The net heat flux anomaly is largely due to the decrease in

evaporative cooling, with relatively small contributions from sensible and radiative

fluxes. The dominance of the latent heat fluxes holds for all seasons except MAM+1,

when the shortwave fluxes are of comparable magnitude (see below). In SON0 south-

eastward cross-equatorial winds develop in the western side of the basin presumably

as response to the positive SST south of the equator, and represent a decrease in the

southern trades. At the same time the SST anomaly south of 20◦S begins to weaken,

due to heat loss to the atmosphere at a rate of about 12Wm−2K−1. Equatorward of

15◦S the heat flux anomaly is close to zero, except in the equatorial band at about

40◦W where there is a small area of positive heat flux anomaly.

In DJF+1 northerly cross-equatorial winds in the western side of the basin have

developed a curvature which is reminiscent of the climatological equatorward shift

of the ITCZ. As the ITCZ moves closer to the equator, the northern branch of the

trades is also affected by the existent cross-equatorial SST gradient, creating north-

westerly wind anomalies in the deep tropics. In the southern tropics, the southern

trades are still weakened by the SST gradient. As a result, heat fluxes of oppo-

site sign develop across the equator cooling the SST to the north and sustaining the

warming to the south through a positive air-sea feedback. Meanwhile, in the subtrop-

ics the SST anomaly has decreased substantially due to thermodynamical damping.

In MAM+1 an SST dipole emerges, with statistically significant SST anomalies on

both sides of the equator. SST anomalies are now concentrated in the deep trop-

ics, and are accompanied by northerly cross-equatorial winds, as seen in Figures 21
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and 25. There, the net surface heat flux is negligible because of a counterbalance

effect between the latent heat flux and the shortwave radiation: Wind-induced latent

heat fluxes tend to strengthen the SST anomalies through a positive feedback, while

decreased (increased) insolation over warm (cold) waters opposes it (not shown).

Insolation changes coincide with regions of anomalous precipitation. Hence, in the

near-equatorial region, the shift of the ITCZ due to the anomalous SST gradient pro-

vides a negative feedback by preventing incoming solar radiation from reaching the

surface.

The combination of subtropical damping and a positive air-sea feedback in the

deep tropics results in the apparent “motion” of the SST anomaly towards the equa-

tor. Thus, the analysis supports the existence of a positive, large-scale feedback in

the western deep tropical Atlantic basin, as found in previous works, e.g. [Chang

et al., 2000; Chiang et al., 2002]. In JJA+1 net heat flux anomalies tend to damp

SST anomalies everywhere, including the deep tropics.

The forward composite of Figure 27 presents smaller SST anomalies than the

backward composite of Figure 25 (as also seen in observations). The main reasons

are the absence of circulation anomalies in the SH during SON0 and of the NAO dur-

ing boreal winter, and the enhanced air-sea coupling that associated SST anomalies

would induce. We address the role of the NAO in the next section. Comparison of

Figures 25 and 27 suggests that during austral spring both IAV and an atmospheric

response to SST forcing play a role in the development of the gradient mode. Assum-

ing that the IAV is much larger than the SST-forced part, we calculated the leading

mode of IAV during spring in the SH. The spatial structure is very similar to that

of the leading EOF in JJA. Then, to look at the role of the IAV during SON0 we

constructed an analogous composite to Figure 27, but only considering the subset of

years in which the leading mode of atmospheric circulation in SON0 is such that it
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tends to reinforce the SST anomalies already created by the atmospheric circulation

in JJA0. We found that the evolution of SST anomalies is dictated by the same pro-

cesses described for Figure 27, but the resultant SST gradient in MAM+1 is stronger

and occupies a larger area (not shown). Thus, this suggest that the main role of

the SH winter IAV is to pre-condition the SSTs south of the equator for the devel-

opment of a strong SST gradient in the following boreal winter and spring seasons.

Results also show that austral winter IAV may be able, by itself, to excite TAV the

following year: SST anomalies in tropical latitudes, mainly a consequence of evapo-

rative heating anomalies associated with changes in wind speed, tend to persist until

a favorable season for the excitation of TAV, and grow into a cross-equatorial dipole

in boreal spring. Circulation anomalies during season SON0 may further enhance

(weaken) the SST anomaly induced by IAV during winter, thus assisting (interfering)

the development of a larger gradient in MAM+1.

4. NAO as an external forcing to TAV

To compare the SH influence on TAV with the NH influence, we repeated the same

analysis to the data in the NH. We define the northern winter season as January-

February-March (JFM), which coincides with the most active NAO season [Marshall

et al., 2001], and apply the same procedure of section 3c to surface pressure in the

region defined by (70◦W-30◦E, 20◦-70◦N).

The leading mode of internal variability is shown as a homogeneous regression

map over an extended domain, encompassing the Pacific basin. As expected, the

dominant mode is an NAO-like circulation (Figure 28). It consists of a dipole in

surface pressure, with one center of action west of Portugal, and the other one, of

opposite sign, located north of Iceland. A secondary maximum in surface pressure is

found in the North Pacific, in agreement with the literature [Marshall et al., 2001;
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Fig. 28. Spatial pattern of the leading mode of IAV in the model during JFM season.

The spatial pattern is shown as a homogeneous regression map over a larger

region. EOF analysis was performed in the region marked by the dashed box.

Contour interval is 20Pa, and shading indicates statistical significance at 95%.

Thompson and Wallace, 1998]. The time series associated with this pattern, which we

will use as an index of NAO, shows large intra-ensemble variability and no preferred

time scales.

Composites of SST and net heat flux anomalies were constructed using the NAO

index in the same way as in the case of the SH. The only difference is that we shifted

the calendar from DJF+1 to SON+1 to capture the evolution of SST anomalies

generated by the NAO during boreal winter.

In agreement with previous studies, e.g. [Marshall et al., 2001], the composite of

SST anomalies shows the tripole characteristic of NAO forcing in the North Atlantic

Ocean, reaching maximum amplitude in MAM+1 (left panels, Figure 29). In this

season SST anomalies are mostly confined to the north of 10◦N. The DJF+1 net heat

flux composite reveals a net heat input into the ocean mixed layer with the same

structure and sign as the composite of SST anomalies (right panels, Figure 29). In

MAM+1 the net heat flux anomalies change sign, damping SST anomalies almost
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everywhere. During the same season, in the northwestern tropics, between 0◦−20◦N,

the sign of the heat flux anomaly tends to be the same as that of the SST anomaly

(both negative), hinting at the existence of a positive feedback there. Both, the latent

heat flux and solar radiation contribute to the cooling of the SST. As result, the SST

anomaly appears to “move” equatorward, reaching the equator in JJA+1. In this

season the wind-induced latent heat flux cooling in the northwestern tropics is almost

balanced out by increased insolation. Hence, the net surface heat flux is close to

zero, and the SST anomalies persist until SON+1. As in the previous section, and in

agreement with previous studies [Chang et al., 2000], the positive feedback is seen to

occur only on the western side of the equatorial Atlantic basin.

There is a tendency for the TSA to show SST anomalies of sign opposite to that

in the TNA, but they do not become significant. We conclude that the NAO can

create large SST anomalies in the TNA, and in the northern deep tropics with the

help of a positive feedback (thus creating a large SST gradient). The influence of the

NAO on the TSA is, however, very weak and not consistent with the emergence of an

SST dipole in the tropical Atlantic. These results agree with the diagnostic study of

[Czaja et al., 2002], where they find evidence, in observations, of a positive feedback

within the northern deep tropics. They also note, however, that no SST anomaly

develops south of the equator when regressing SST onto an index of the TNA in

MAM.

E. Summary

The dominant mode of climate variability in the tropical Atlantic is characterized by

an interplay between SST, winds and evaporation, with largest manifestation in boreal

spring. This mode of variability has been shown to have interannual-to-decadal time
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Fig. 29. Composite of SST (left panels) and net downward surface heat flux (right

panels), constructed as the difference between positive and negative years of

the NAO index.
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scales, and is commonly thought to be externally excited by atmospheric anomalies

acting on the TNA.

We studied, using both observations and model output, the evolution of SST

anomalies in the Atlantic basin for those years during which the ENSO phenomenon

is absent, but a significant cross-equatorial SST gradient develops in the boreal spring.

A particular emphasis was placed on the role of the SH winter IAV in the development

of a tropical SST gradient. We also contrasted the SH influence on TAV with the in-

fluence of the NAO using a large ensemble of POGA-ML runs. Ocean dynamics, such

as currents and wave propagation, are not taken into account in these experiments.

The working hypothesis is that ocean-atmosphere interaction in the tropical Atlantic

primarily involves a thermodynamic coupling between SST and heat flux.

The results indicate that the SH winter IAV plays a pre-conditioning role in

the onset of strong SST gradients in the boreal spring of the following year. The

modeling study provides a plausible mechanism through which the SH winter IAV

may excite TAV and lead to the development of the gradient mode. The scenario can

be described as follows: in JJA0 a weakened South Atlantic subtropical high leads to

weakened southeasterly trade winds, which, in turn, remove less heat from the ocean,

thus generating a warm SST anomaly north of 25◦S. This SST anomaly appears to

have maximum amplitude around 20◦S. In the subsequent seasons, the subtropical

part of the SST anomaly is damped by anomalous latent heat fluxes, but not the

tropical part. The SST anomaly equatorward of 10◦S is created by a wind change in

response to a cross-equatorial SST gradient, and maintained by a weak positive air-sea

feedback. The expected interplay between SST, heat flux and winds characteristic

of TAV creates a negative SST anomaly in the northern tropics and sustains the

existence of the SST dipole through MAM+1. The thermodynamic feedback in the

near-equatorial region is opposed by the negative feedback provided by anomalous
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cloud cover due to the shift of the ITCZ toward anomalous warm waters. This result

is consistent with the observational work of Tanimoto and Xie [2002]. In agreement

with observations, the model further indicates the disappearance of the dipole by

boreal summer, when the positive feedback ceases to exist.

In contrast, the NH winter IAV, as characterized by a NAO-like circulation,

has a large impact on the TNA SSTs, in agreement with the literature. These SST

anomalies are mainly confined north of 10◦N in boreal spring. During the following

seasons the SST anomalies move equatorward as a result of a positive air-sea feedback

in the deep northern tropics. There is a tendency in the TSA to develop an SST

anomaly of opposite sign during northern summer and fall, but it does not become

statistically significant.

F. Discussion

In this chapter we investigated the influence of SH winter IAV on the origin and

evolution of SST anomalies in the tropical Atlantic. As is the case for the NAO, we

show that the SH winter IAV can possibly excite TAV and produce tropical anoma-

lies during the following austral summer and fall seasons. The time lag of about 6 to

9 months appears to be related to the time scale of response of the mixed layer to

atmospheric forcing, and to the time scale associated to the “movement” of the ini-

tially subtropical anomaly towards the deep tropics. However, model results suggest

that there is an asymmetry in forcing the deep tropical SST anomalies from both

hemispheres. While SST anomalies in the TSA affect TAV in the deep tropics and

can produce SST anomalies of opposite sign in the TNA, the NH winter IAV does

not seem to be able to generate an SST anomaly of opposite sign in the TSA. This

asymmetry could be a consequence of the missing ocean dynamics in the slab ocean
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used here, or, more fundamentally, of asymmetries in the geographical distribution

of continents in the equatorial region. Note that the positive feedback in the TNA

occurs in a longitudinal band which is occupied by land to the south of the equator

(Figure 29), whereas the reverse is not true for the TSA.

The role of the thermodynamic air-sea coupling in the deep tropics seems to be

that of maintaining and “moving” towards the equator the SST anomaly created in the

subtropics. This mechanism could be fundamentally important for enhancing seasonal

predictability in the deep tropics, which would allow prediction of SST anomalies, and

thus of the ITCZ location, up to 9 months in advance. In the absence of this process

the lifespan of SST anomalies would be much shorter, on the order of a season or less,

given the shallow depth of the mixed layer in the deep tropics.

The TAV excited by the southern tropical SSTs leads to the generation of a

dipole in MAM that is confined to the deep tropical region. Although SST anomalies

are weak, they may still be relevant to ITCZ variability, because it is during that

season that the ITCZ is closer to the equator and the associated convective activity

is very sensitive to the SST within the 10◦S-10◦N band [Chiang et al., 2002]. On the

other hand, the NAO induces a large SST anomaly north of 10◦N during that same

season. Accordingly, a stronger SST gradient would be created (in MAM+1) during

those years in which the NAO acts constructively to generate a larger dipole than the

one that would be created in the absence of NH circulation anomalies (recall that IAV

in the SH and NH winter are assumed to be independent). Not only would the SST

anomaly in the TNA encompass a larger area, but the anomalies in the deep tropics

would last longer because they can be sustained by a stronger coupling. A composite

of the evolution of SST anomaly in such years suggests that this is in fact the case

(Figure 30). In other years, however, the NH winter circulation anomalies may act in

an opposite way, disrupting the generation of the SST gradient. In addition, the SST
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forces SST anomalies on TNA with opposite sign than those created in the

TSA by the SH winter circulation in JJA0. (a) JJA0, (b) SON0, (c) DJF+1,

and (d) MAM+1.
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anomaly created by the SH IAV during austral winter in the TSA may be further

reinforced by circulation anomalies during the next spring, creating a larger anomaly

that will help the development of a larger dipole.

We want to stress, however, that results support the view that the gradient

mode is not just the sum of SST anomalies created independently at both sides of

the equator by IAV and the ocean responding passively. Atmosphere-ocean thermo-

dynamic coupling in the deep tropics plays a fundamental role in the development

of the mode. Based on these findings, we propose that to understand the TAV it

is necessary to consider not only the remote influence of ENSO and the NAO, but

also the atmospheric circulation in SH. We anticipate that the consideration of the

SH winter atmospheric circulation as a pre-conditioning process for the state of the

tropical Atlantic in the following seasons will aid in predicting and understanding

TAV.
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CHAPTER IV

PREDICTION OF TROPICAL ATLANTIC SST USING AN AGCM COUPLED

TO A SLAB OCEAN

A. Introduction

Several studies have shown that AGCMs have high skills for seasonal climate predic-

tion in the tropical Atlantic, provided the SSTs are known in advance. One particular

region in which AGCMs have shown large potential predictability is the Northeast-

ern region of Brazil during the rainy season (see Figure 42 below). However, current

seasonal predictions of tropical Atlantic SSTs are based on statistical approaches and

the skill of these forecasts is usually not better than the prediction given by per-

sistence forecasts. One of the reasons for the low skills is the poor understanding

of the complex underlying dynamics in TAV. The majority of current-generation of

fully coupled general circulation models (GCMs) contain large systematic biases in

the climatic mean state of the Atlantic region, and have not been able to realistically

simulate TAV, particularly the covarying pattern of cross-equatorial SSTs and over-

lying atmospheric circulation characteristic of the gradient mode (see Figure 20). To

bypass the large systematic errors encountered by fully coupled GCMs, we explore

an alternative way for prediction of SSTs and climate in the tropical Atlantic region

using an AGCM coupled to a slab ocean model.

In the previous chapter we demonstrated the relevance of thermodynamic air-

sea coupling in the evolution of SSTs within the tropical Atlantic basin. From the

results of the previous chapter, it is likely that this positive feedback will increase the

persistence of SST anomalies (thus enhancing the predictability) by opposing other

negative feedbacks.
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In addition to the local thermodynamic feedback, there is at least one more pro-

cess that can enhance the predictability of tropical Atlantic SSTs: the remote ENSO

influence. As mentioned in Chapter III, the atmospheric circulation anomalies asso-

ciated with ENSO are known to generate SST anomalies in the TNA with maximum

amplitude during boreal spring through changes in the surface heat flux. TNA SST

anomalies lag the Pacific SSTs by about a season. The delay is given by the time that

it takes the atmosphere to respond to equatorial Pacific SST anomalies, and the trop-

ical Atlantic Ocean response to these circulation anomalies. Thus, knowledge of the

SST conditions in the Pacific during the previous December is useful for predicting

TNA SST anomalies during the boreal spring following an ENSO event. Moreover,

since ENSO itself has been shown to be predictable a few seasons in advance, this

predictability translates to the SST predictability in the Atlantic basin.

Based on this reasoning Chang et al. [2003a] recently carried out sets of prediction

experiments using the CCM3 model coupled to a slab ocean. This coupled model

can be viewed as the simplest tier-one global dynamical seasonal prediction system.

Using global observed initial conditions in December, Chang et al. [2003a] run the

coupled model in prediction mode until mid-September of the following year. A

10-member ensemble of prediction runs was constructed for the period from 1981

to 1996. Their results show that the predicted SSTs in the Caribbean and TNA

regions have correlation skills higher than 0.5 for lead time of up to six months. Since

the SST persistence is short in these regions (due to a shallow mixed layer), this

skill is attributed to the remote influence of ENSO and the local feedbacks. On the

other hand, the model shows much reduced skill in the equatorial region where the

correlation skill drops to a non-significant value after a lead time of two months. Low

skills were also found in the Atlantic cold tongue region. The reason for the model’s

low skills in these regions is hypothesized to be due to the absence of ocean dynamics
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in the slab ocean. These results are confirmed by an extended prediction experiment

from 1959 to 2000.

The goal of this chapter is to test the hypothesis of the importance of ocean dy-

namics in the predictability of TAV. A second objective is to improve the prediction

of SSTs by including the relevant ocean processes to the CCM3 coupled to the slab

ocean. In the following section we describe the prediction experiments. In section

C we present a way to statistically correct the slab ocean so that it includes a pa-

rameterization of the ocean dynamics relevant to TAV. Prediction experiments with

the corrected coupled model are shown in section D, and are compared to prediction

experiments without the correction, focusing on two variables: SST and precipitation.

Section E analyzes the patterns and temporal evolution of the leading modes of SST

variability in the different setups of the model and compares them to observed ones.

In section F we summarize our findings, and in the last section we discuss the results.

B. Model and data sets

The CCM3 is coupled to a slab ocean as in Chapter III (hereafter CCM3-ML). Here,

however, the CCM3-ML is run in prediction mode, that is, it is initialized with

observed initial conditions and then let run freely for 9 months. Note that the slab

ocean only needs to be initialized with SSTs, and does not need any subsurface ocean

data.

Four different prediction experiments were carried out using the CCM3-ML.

• Prediction with Global Initial Conditions (PGIC): The CCM3-ML was initial-

ized with global observed December SSTs during 1959 to 2000.

• Prediction with Atlantic Initial Conditions (PAIC): The CCM3-ML was ini-

tialized with observed SSTs only in the Atlantic basin within 30◦S and 60◦N.
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Outside the basin December climatological SST was used as initial condition.

The prediction was performed from 1959 to 2000.

• Corrected Prediction with Global Initial Conditions (CPGIC): Analogous to

GPIC but the slab ocean included a correction designed to take into account

some of the effects of linear ocean dynamics on SST evolution. The prediction

was performed starting from December of 1981 to 2000.

• Corrected Prediction with Atlantic Initial Conditions (CPAIC): Analogous to

PAIC but the slab ocean included a correction designed to take into account

some of the effects of linear ocean dynamics on SST evolution. The prediction

was performed starting from December of 1981 to 2000.

Each prediction experiment consists of 10 ensemble members. Each ensemble

member was initialized with a different atmospheric initial condition, which corre-

sponds to actual December days taken from NCEP-NCAR Reanalysis data set around

December 15th. The slab ocean was initialized with the observed SST averaged over

the week of December 15th. All prediction experiments were run from December 15th

to September 15th. We analyzed the experiments from January to August with a par-

ticular attention to the boreal spring that is the peak season of the gradient mode.

In what follows we will refer PGIC and PAIC to as the non-corrected experiments.

The corrected prediction experiments (CPGIC and CPAIC) were conducted only for

the period 1981 to 2000 because of the sparsity of the data in the SH in the earlier

period (before the advent of satellite-derived SST), and because of our focus on the

equatorial Atlantic where the ocean dynamics is believed to be most active.

We validated predictions against observations by focusing on two very important

climatic variables: SST and precipitation. We use the reconstructed data set of Smith

et al. [1996] for SST, and the Xie-Arkin data set for precipitation. Surface wind stress
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and 925 mb winds taken from the NCEP-NCAR Reanalysis data set were also used

in this study. All data sets were projected onto a T42 grid, which has a horizontal

resolution of roughly 2.8◦ x 2.8◦.

C. Statistical correction of the slab ocean

1. Methodology

The approach consists of introducing a new term to the SST equation of the slab

ocean that parameterizes some of the effects of linear ocean dynamics on the SST

evolution. The derivation is summarized as follows.

In a slab ocean the evolution of SST is completely determined by the surface

heat fluxes. After removing the annual cycle we can write ∂T
∂t

= Q, where T is the

sea surface temperature anomaly, t denotes time, and Q is the net surface heat flux

anomaly into the ocean divided by the heat capacity of the mixed layer. We assume

that Q can be divided additively into two parts: one that is related to the surface

temperature (QS(T )), and a second part that is independent of the temperature,

which we will consider as noise (QN) (see Appendix B). Thus, the SST equation of

the slab ocean reads

∂T

∂t
= QS(T ) + QN , (4.1)

where variables denote ensemble mean quantities of a non-corrected prediction (PAIC

or PGIC). We also assume that the observed SST anomaly obeys a similar equation,

i.e.,

∂T̂

∂t
= Q̂S(T̂ ) + Q̂N , (4.2)

where the “hat” denotes observed quantities. Moreover, we assume that the heat flux
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anomaly is linearly related to the temperature anomaly

QS(T ) = AT, Q̂S(T̂ ) = ÂT̂ , (4.3)

where A and Â are the linear operators (matrices) in the model and in the observation,

respectively. These two operators are of course different because Â includes not

only ocean-atmosphere feedbacks, but also a contribution from ocean dynamics (see

Appendix B). Our goal is to derive a linear operator B, such that A+B approximates

Â as close as possible. After the operator B is determined, we can incorporate it into

the equation of the slab ocean. The new term BT will represent an anomalous ocean

heat transport.

To find B we proceed as follows: Taking the difference between equations (4.1)

and (4.2), and rearranging the terms, we get an equation for the prediction error

ε = T̂ − T ,

∂ε

∂t
= Âε + BT + ζ, (4.4)

where ζ = Q̂N − QN . Since the initial prediction error is zero (ε(0) = 0), evaluating

equation (4.4) at t = 0 leads to

∂ε

∂t

∣∣∣∣∣
0

= BT (0) + ζ(0). (4.5)

Equation (4.5) states that the tendency of the prediction error at the initial

time is linearly related to the initial temperature, and the operator that links the

two quantities is the undetermined linear ocean dynamics. In reality, B represents

not only the missing ocean dynamics, but also systematic errors in the atmospheric

fluxes of the model. We assume that the latter is smaller than the former, so that B

represents, to a large extent, the missing ocean dynamics. Integrating equation (4.4)
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between zero and a small lead time τ (τ → 0) gives

ε(τ) � τBT (0) +
∫ τ

0
ζ(t)dt. (4.6)

Since by definition the noise part of the heat flux does not covary with the

temperature, B can be calculated as the coefficient matrix of a multivariate linear

regression,

B =
1

τ
< ε(τ)T (0)t >< T (0)T (0)t >−1, (4.7)

where the brackets denote a time average. Equation (4.7) is formally valid only

for small lead time prediction τ , and the inclusion of B in the equation of the slab

ocean tends to correct for the initial tendency errors of the model. In our case, the

minimum value of τ we can use is one month, because we use monthly data. Once

B is determined, we incorporate it into the model as a linear correction. Thus, in a

linear framework the SST equation reads,

∂T

∂t
= AT + BT + QN � ÂT + QN . (4.8)

The corrected slab ocean is no longer driven by atmospheric heat fluxes only.

Changes in temperature can occur due to the action of matrix B on SST anoma-

lies. Since B is generally non-diagonal, it connects different grid points within the

corrected region. Therefore, changes of SST in one location may depend on SST

anomalies in other locations. This property is essential to represent dynamical ocean

processes, which can affect remote areas through advection or wave propagation. It

is worth noting that the evolution of grid points outside the corrected area may also

be indirectly influenced by B. Since the evolution of grid points within the corrected

region is different in corrected and non-corrected experiments (due to BT ), these

changes may translate to other regions through, for example, heat fluxes due to wind
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anomalies responding to an SST gradient. Thus, the evolution of SSTs in the Atlantic

basin in corrected and non-corrected experiments may be different.

In principle this methodology can be applied globally. Since our focus is in

the tropical Atlantic, we consider a relatively small ocean region defined by (50◦W-

20◦E,20◦S-5◦N). This area encompasses the equatorial Atlantic as well as the Atlantic

cold tongue region, and thus, it is a region where ocean dynamics is likely to play an

important role, e.g., Carton and Huang [1994]. We hereafter refer this region to as

the equatorial-tropical South Atlantic (ETSA).

2. Correction matrix B for the ETSA

The methodology to calculate B involves finding the inverse of the December SST

covariance matrix (equation (4.7)), which in our case is singular. A way to solve this

problem is to work in a reduced state space using EOFs as basis functions. Here

we used EOFs of December SST as the basis. We first calculated the EOFs, and

then projected T (0) and ε(τ) onto them, so that B can be determined in the EOF

space. In general, B can depend on two parameters: one is the EOF truncation that

determines the dimension of the EOF space where B is calculated, and the other is

the lead time τ . As noted in section C.1, τ should be small for equation (4.7) to be

valid. In practice, however, we allow it to vary from 1 to 5 months to find the best

correction B. We show that the best correction B is found for the smallest possible

τ in the available data, that is, for τ = 1 month.

We applied the technique to the set of prediction experiments initialized with

observed SSTs in the Atlantic basin only (PAIC). This is to avoid possible contam-

ination from the remote influence of Pacific SST onto the ETSA. The Pacific SSTs

may generate circulation anomalies that create a heat flux signal in the ETSA region.

If this is the case, the total heat flux signal would depend not only on the local SSTs,
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but also on remote SSTs, thus compromising the assumption stated in equation (4.3).

Results show, however, that the characteristics of the correction B are very similar

regardless of the choice of the non-corrected prediction set.

We now describe the criteria used to find the best correction B in the parameter

space of EOF truncation and lag time τ . Assuming the evolution of the SST obeys

equation (4.8), the SST at time t, T (t), can be predicted from the initial condition

T (0) using the matrices A and B as [Penland and Sardesmukh, 1995]

T (t) = e(A+B)tT (0). (4.9)

The matrix A represents the linear relationship between the SST and heat fluxes

in the absence of ocean dynamics. It can be calculated for the CCM3-ML following a

Linear Inverse Modeling approach outlined in Penland and Sardesmukh [1995]. That

is,

A =
1

l
∗ log(Cl ∗ C−1

0 ), (4.10)

where C0 is the covariance matrix of December SST, and Cl is the lag covariance

matrix between December SST and SST at lag=l. In this study we used a control run

to calculate matrix A. In the control run the CCM3-ML is integrated for 100 years,

which provides a reliable independent data base to estimating A. Once A is calculated,

we calculated B in the parameter space spanned by τ and the EOF truncation number.

The predicted SST for January to August using equation (4.9) was then compared to

the observed SST. We choose matrix B such that the prediction is the best according

to the following two measures of prediction skill: the normalized error variance of

predicted SST, and the correlation between prediction and observations during April-

May-June. These skill measures are calculated over the entire corrected (ETSA)

region. This criteria leads to the following choice of parameters: an EOF truncation
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Fig. 31. Normalized error variance of predicted SST for CCM3-ML (solid line), lin-

earized model (dashed line), and linearized corrected model (dotted line).

The horizontal axis indicates lead time in months.

number of four (which explain 82% of the total variance), and a lead time τ of one

month. The “a posteriori” result that the best B is found for the smallest possible

value of τ is encouraging because, as said above, equation (4.7) was derived in the

limit of very small τ .

Figure 31 shows the normalized error variance of predicted SST for the CCM3-

ML, the linear model (equation (4.9) without B), and the corrected linear model

(equation (4.9) with B). Clearly, the normalized error variance is smallest in the

latter case. The correlation between the observed and predicted SST averaged over

the corrected region during April-May-June is also consistent with this finding. It

shows a correlation skill of r = 0.31 for the linear model (B = 0), and of r = 0.51 for

the corrected linear model. Only the latter correlation skill is significant at the 95%

level.

Results of Figure 31 were found using all the years from the period 1959-2000.

We repeated the same analysis using a jackknifing procedure, where estimates of

the correction matrix B were calculated leaving out the years for validation. The

normalized error variances of predicted SST are, in this case, very similar to those
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shown in Figure 31. Moreover, the correlation skill did not change significantly. The

leading eigenmodes of B also have similar spatial and temporal characteristics with

and without jackknifing (not shown). Furthermore, as noted before, results are not

sensitive to the prediction set (PAIC or PGIC) used to calculate B. Therefore, we

conclude that the characteristics of matrix B are robust, and we will use the correction

B calculated using all available years as the linear correction to include the missing

dynamics in the slab ocean.

We would like to stress that since the best correction matrix B is calculated

using the prediction error at lead time τ = 1, only the predicted January SST from

PAIC is used. Moreover, the correction only accounts for the prediction error that

is linearly related to the SST anomaly. Thus, the prediction experiments with the

corrected slab ocean (CPAIC and CPGIC) are not simply hindcast experiments.

D. Dynamical predictions

To detect the coupled ocean-atmosphere signal, and therefore the predictable part of

the dynamics, we calculated the ensemble mean of each experiment. The ensemble

mean is considered the best climate prediction because it filters out the noise that is

always present in the system. In the following we analyze the ensemble means of the

prediction experiment unless otherwise noted.

1. Prediction of SST

a. Non-corrected prediction experiments

In this section we summarize the results of PAIC and PGIC experiments performed

with the CCM3-ML during the period 1981 to 2000. Figures 32 and 33 show the

correlation maps of PAIC and PGIC, respectively, from January to August in the
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tropical Atlantic. Figure 34 shows the correlation map for the persistence forecast,

which is taken as the reference forecast during the whole study.

During January and February PAIC and PGIC show very similar skills. Off

equatorial regions are predicted well above the 95% level of statistical significance,

but in the equatorial region the skill of the predictions is already below that level in

February. The skill in the TNA region is higher than that of the persistence forecast,

while in the ETSA the skill is comparable.

During March-April-May (MAM) the PGIC and PAIC perform much better

than the persistence forecast in the TNA. The fact that PAIC shows higher skill

than persistence indicates the importance of local thermodynamic air-sea feedback

in the dynamics of the TAV. Note that skills are generally larger in the western side

of the TNA where the feedback is believed to be operating. Also, the PGIC shows

larger skill than the PAIC in the TNA demonstrating that remote influences from the

Pacific Ocean are very important for the evolution of the region, in agreement with

previous works [Enfield and Mayer , 1997]. In the equatorial and cold tongue regions,

however, persistence is a better forecast model. These results are consistent with

those of Chang et al. [2003a]. However, their experiment with Atlantic-only initial

conditions presents higher skill in the deep tropical northern region. This difference

may be related to the fact that we used weekly SST to initialize the experiment, while

they used December monthly mean SST.

During June-July-August the PGIC and PAIC still show large skill in the TNA

of comparable magnitude, while the skill of the persistence forecast is negligible. In

the ETSA region the PGIC shows a skill comparable to persistence, but both are low.

The PAIC shows almost no skill in the ETSA.

These findings indicate that SST predictability in the TNA has two sources, one

due to local thermodynamic air-sea feedback, and the other due to remote influences
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Fig. 32. Correlation between SST predicted by PAIC experiment and observed SST

for different months. Correlations larger than 0.3 are in light shading, and

correlations larger than 0.45 (95% significance level) are in dark shading.



112

80W 60W 40W 20W 0E 20E
20S

10S

0  

10N

20N

30N
Jan

0.3

0.3

0.45 0.45

0.45

0.6

0.6
0.6

0.75

0.75

80W 60W 40W 20W 0E 20E
20S

10S

0  

10N

20N

30N
Feb

0

0

0
0.15 0.15

0.15

0.3
0.3

0.3

0.3

0.45

0.45

0.45

0.45

0.6

0.6

0.6

0.6

0.75

0.75

0.75

80W 60W 40W 20W 0E 20E
20S

10S

0  

10N

20N

30N
Mar

0
0

0.15

0.
15

0.30.3

0.3

0.3

0.3
0.45

0.45

0.
45

0.6
0.6

0.
75

80W 60W 40W 20W 0E 20E
20S

10S

0  

10N

20N

30N
Apr

0

0.15

0.15

0.15

0.3

0.3

0.3 0.3

0.45

0.45

0.45

0.6

0.6

80W 60W 40W 20W 0E 20E
20S

10S

0  

10N

20N

30N
May

0

0

0

0.15

0.15

0.3

0.3

0.
3

0.3

0.3

0.45

0.
45

0.45

0.6
0.60.75

80W 60W 40W 20W 0E 20E
20S

10S

0  

10N

20N

30N
Jun

−0.3

−0.15
0

0

0

0

0

0

0.15

0.15

0.150.15 0.15
0.3

0.3

0.3

0.3
0.45

0.
45

0.6

80W 60W 40W 20W 0E 20E
20S

10S

0  

10N

20N

30N
Jul

−0.3

−0.15

0
00

0

0

0

0

0

0.15

0.15

0.15

0.
15

0.15
0.3

0.3

0.
3

0.3

0.
3

0.45

0.45

80W 60W 40W 20W 0E 20E
20S

10S

0  

10N

20N

30N
Aug

−0.3
−0.15

−0.15
0

0

0

0

0

0

0

0 0

0

0.
15

0.15

0.15

0.15

0.15

0.3 0.3
0.3

0.3

0.3

Fig. 33. Correlation between SST predicted by PGIC experiment and observed SST

for different months. Shading as in Figure 32.
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from the tropical Pacific. Chang et al. [2003a] propose two ways in which the air-

sea feedback may lead to the SST predictability, and they imply different conceptual

models of ocean-atmosphere interaction. The first way is through reduced thermal

damping of anomalous SST. In this case the coupled system can be described by a

1-dimensional mixed layer model with an adjusted damping coefficient, like a Hassel-

mann model. A second possibility is that the air-sea feedback makes the system non-

normal, that is, the normal modes are not orthogonal. In this latter a 1-dimensional

energy balance model can no longer describe the coupled system. Chang et al. [2003b]

explored the role of the non-normality in the prediction of SSTs in a simple model of

TAV. They found that the predictability can arise from the interaction between the

gradient mode and other coupled modes. The CCM3-ML is a very good model for

prediction of SSTs in the TNA. In the ETSA region, on the other hand, the CCM3-

ML does a poor job and cannot beat persistence. We assume this is because of the

absence of ocean dynamics in the slab ocean, and will show below that the correction

introduced to the slab ocean improves the forecast. It is interesting to note that PGIC

has higher skill than PAIC in the ETSA region after March, hinting a possible role

of remote influence in forcing the evolution of SSTs not only in the TNA but also in

the ETSA SSTs.

b. Corrected prediction experiments

Figures 35 and 36 show the SST correlation maps for the CPAIC and CPGIC exper-

iments, respectively. These are to be compared with Figures 32, 33 and 34. During

January and February the corrected predictions show similar skill as the non-corrected

ones. During MAM corrected and non-corrected predictions show generally similar

skills. There is a tendency, however, for the corrected experiments to show higher

skills in the eastern side of the deep northern tropics and reduced skill in the western
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side. This is particularly true during April, and suggests an interaction between the

eastern deep northern tropics and the central equatorial Atlantic. In the ETSA the

corrected predictions are clearly superior to the non-corrected ones. Both the CPGIC

and the CPAIC show large areas with skill above the 95% level which are absent in

PGIC and PAIC. Comparison with Figure 34 shows that the corrected predictions

show similar skill as persistence in the ETSA. In the next season, however, the cor-

rected predictions outperform the non-corrected predictions as well as the persistence

in the ETSA. In the TNA, on the other hand, the CPAIC shows lower skills than

the PAIC, while the CPGIC shows comparable, if not lower, skill than PGIC. Thus,

the correction is seen to improve the prediction in the ETSA during all months. In

the TNA, the corrected predictions show similar skill as the non-corrected ones up to

May, and tend to degrade skills afterwards for reasons that are not fully understood.

To test the sensitivity of the results to changes in the correction matrix B we run

an additional experiment. We repeated the corrected prediction using global initial

conditions with a correction matrix B′ = 2 ∗ B. A 10-member prediction set was

constructed for the same period 1981 to 2000. The correlation of predicted SST with

observed SST for this experiment reveals similar characteristics as for CPGIC (not

shown). The skill in the ETSA is enhanced respect to the PGIC, although not as

much as in CPGIC. In the TNA the skill is very similar to that of CPGIC. Thus,

according to this test, the results of the corrected prediction are not highly sensitive

to changes in the correction matrix B.

To further compare the corrected predictions with the non-corrected ones we con-

structed an index to characterize the gradient mode. This so-called gradient index is

defined as the SST difference between the regions defined by (50◦-20◦W,4◦-14◦N) and

(35◦-5◦W,4◦-14◦S). Figure 37a shows the correlation of the gradient index constructed

for each prediction experiment with the observed gradient index. Clearly, the pre-
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Fig. 35. Correlation between SST predicted by CPAIC experiment and observed SST

for different months. Shading as in Figure 32.
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Fig. 36. Correlation between SST predicted by CPGIC experiment and observed SST

for different months. Shading as in Figure 32.
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Fig. 37. Correlation between predicted and observed (a) gradient index, and (b) ATL3

index for each prediction experiment: PAIC (dotted line), PGIC (dashed line),

CPAIC (bold dotted line), and CPGIC (bold dashed line). Persistence of the

index is shown as a solid line. The horizontal line denotes the 95% significance

level.

dicted gradient index is closer to observations when the CCM3-ML is initialized with

global initial conditions. When the model is initialized with Atlantic initial condi-

tions, the predicted gradient index is not better than the one given by the persistence

forecast. These predictions have different skills in the two areas defining the gradient

index, but none of the predictions is able to forecast both areas with high skill.

On the other hand, both predictions with global initial conditions (PGIC and

CPGIC) beat the persistence after February. The non-corrected prediction (PGIC),

however, shows a correlation skill of about r = 0.4 from February to July that is below

the 95% significance level. The corrected prediction (CPGIC), on the contrary, is able

to predict the gradient index with a correlation well above the 95% significance level

up to July with a peak correlation value of r � 0.7 during April-May. This value

is significant at the 1% level. The enhanced correlation during March-April-May

coincides with the peak season of the gradient mode suggesting that the corrected

CCM3-ML initialized with global observed SSTs captures the dynamics of this mode

much better than any other prediction.



119

The temporal evolution of the gradient index calculated from observations and

from CPGIC is shown in Figure 38. In agreement with the high correlation skill,

the sign of the dipole predicted by the ensemble mean is correct most of the times,

although the amplitude is smaller because the average operation smoothes the anoma-

lies. There are some years, however, in which the predicted dipole shows the opposite

sign as the observed one; these are 1988, 1991, 2000 and 2001. The first two years are

characterized by a rapid evolution toward a negative dipole that the model cannot

capture. In years 2000 and 2001 the initial dipole was very weak (so as in 1991) and

the model apparently is unable to determine its evolution. Unless remotely forced

from the Pacific Ocean, initially small dipoles are generally very difficult to predict

because the thermodynamic feedback is weak and thus SST anomalies are very sensi-

tive to atmospheric perturbations. As a measure of the uncertainty in the prediction,

Figure 38 also shows the spread of the ensemble members for each year. As ex-

pected, the spread (relative to the climatological noise) increases with lead time, thus

decreasing the signal-to-noise ratio of the prediction.

The TAV also contains a zonal mode of variability characterized by a dynamical

coupling between the winds and the SST in the equatorial region. It is believed to

be akin to ENSO and peaks during boreal summer [Zebiak , 1993]. This mode is

often characterized by the ATL3 index, which is the average of SST in the region

(20◦W-0◦E,3◦S-3◦N). The correlation of the predicted ATL3 index with observations

is shown in Figure 37b. Persistence is very high in this region and none of the

prediction experiments is able to beat it until June. However, the corrected coupled

model shows higher skill than the non-corrected ones, which show non-significant

skills after a lead time of two months. The corrected model shows a skill of r � 0.5

during almost all months. The absence of significant differences in skill between

the corrected predictions (with the exception of June) suggests that this region is
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Fig. 38. Time evolution of the gradient index for observations (solid line), and from

the ensemble mean of CPGIC (dashed line). The shading marks the stan-

dard deviation of the ensemble spread around the prediction for each year.

Predictions are plotted only for months January to August. Label positions

correspond to January of the particular year.
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not affected by remote influences, or that the models do not capture correctly the

governing dynamics even with the inclusion of the correction. The mechanisms that

give so large persistence to the ATL3 region deserve further study.

c. Anomaly correlation

Another useful way to validate the predictions is to calculate the anomaly correla-

tion between the predicted and the observed fields (hereafter AC, Anderson et al.

[1999]). The AC measures the degree of spatial similarity between the predicted and

observed fields at a particular time. Here, we report the results when the regional

mean anomaly is subtracted from each grid point before the calculation of the AC.

This favors comparison between dipole-like structures. We repeated the calculation

without removing the regional mean and general conclusions do not change signifi-

cantly, but the AC may change greatly for a particular year.

Figure 39 shows the AC in the region (60◦W-20◦E, 15◦S-15◦N) for the predicted

SST of each prediction experiment as an average over all years. We consider this

region because it encompasses the two indices that characterize the TAV. According

to this measure, a model has a good skill if the anomaly correlation is larger than

the AC of the persistence forecast. Clearly, using this measure, the PAIC has very

limited skill over this region (Figure 39c). The AC of PAIC is always less than the

AC of persistence and it shows large scatter among ensemble members with many of

them showing negative AC at long lead times. The CPAIC experiment has more skill

than PAIC mainly after May reinforcing the idea that the correction includes some

local oceanic process (Figure 39a). The non-corrected prediction with global initial

conditions (PGIC) is better than persistence during May-June. Finally, CPGIC has

the best AC score, which is superior over the persistence after two months into the

prediction. The scatter among ensemble members is relatively small, and in only two
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Fig. 39. Anomaly correlation for each prediction experiment as an average over all

years. Bars denote the AC for the ensemble mean, and the dots are the AC

for each ensemble member. The diamonds indicate the AC for the persistence

forecast.

cases the AC becomes negative for long lead times (Figure 39b).

The AC peaks in April-May, again suggesting that the CPGIC can capture the

dynamics of the gradient mode during boreal spring better than any other prediction

experiment. This hints that the local process included in the correction can inter-

act with the remote influence from the Pacific. To further investigate this issue we

calculated the AC of SST for each year averaging over March to June for PGIC and

CPGIC. The resultant time series for the two experiments characterize the degree

of spatial similarity between the predicted and observed SST for each of the years

during the period 1981 to 2000. Figure 40 shows the difference of AC between the
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Fig. 40. Difference of AC between CPGIC and PGIC (ensemble means). The AC is

calculated from March to June of each year. Black bars indicate ENSO years.

two experiments. The corrected prediction is better than the non-corrected in the

majority of the years with the exception of 1986 and 1993. Also, during ENSO years

the corrected prediction has a better or equal skill than the non-corrected prediction.

Thus, this analysis supports the idea that the dynamics included in the correction

can interact with remote effects through anomalous atmospheric circulations.

2. Prediction of precipitation

As mentioned above, the peak season of the gradient mode is MAM. It is during

MAM that the ITCZ is closest to the equator bringing the rainy season to the north

Northeastern region of Brazil, which extends over (35-45◦W, 2-10◦S) [Hastenrath,

1985]. In this and the following section, we shall explore how the improvement in the

prediction of SST, and particularly in the cross-equatorial SST gradient, is translated

to the prediction of precipitation in the tropical Atlantic.

Figure 41 shows the correlation between predicted and observed rainfall for each

experiment during MAM in the period 1982-2000. Clearly, the corrected experiment

with global initial conditions is the only one able to predict the variability of the

Atlantic ITCZ across the whole basin with significant skill (Figure 41b). The corrected



124

80W 60W 30W 20W  0E 20E
30S

20S

10S

 0 

10N

20N

30N
d. PGIC

0.3

0.3
0.3

0.3

0.3

0.3
0.3

0.3

0.
3

0.3

0.3

0.3

0.3

0.450.
45

0.45

0.45

80W 60W 30W 20W  0E 20E
30S

20S

10S

 0 

10N

20N

30N
b. CPGIC

0.3

0.30.3 0.
3

0.
3

0.3

0.3

0.3

0.3

0.3

0.
3

0.3

0.3
0.3

0.3 0.3
0.45

0.45

0.45

0.6

80W 60W 30W 20W  0E 20E
30S

20S

10S

 0 

10N

20N

30N
a. CPAIC

0.3

0.3

0.
3

0.3

0.3

0.3

0.3

0.
3

0.3

0.3

0.3

0.
450.6

80W 60W 30W 20W  0E 20E
30S

20S

10S

 0 

10N

20N

30N
c. PAIC

0.3 0.3

0.

0.3

0.
3

0.3

0.3

0.
3

0.3

0.3

0.3

0.3

0.45

0.45

Fig. 41. Correlation between predicted and observed rainfall for (a) CPAIC, (b)

CPGIC, (c) PAIC, and (d) PGIC. The contour interval is 0.15. Light shad-

ing indicates values above r = 0.3, and dark shading indicates values above

r = 0.45. Values larger than r = 0.45 are significant at the 95% level.

experiment with Atlantic-only initial conditions (CPAIC) is not able to capture the

displacements and changes of intensity of the ITCZ (Figure 41a). The non-corrected

experiment with Atlantic-only initial conditions (PAIC) also shows very poor skill

in predicting rainfall over the ocean, but shows some skill in predicting rainfall over

Northeastern Brazil (Figure 41c). Finally, the PGIC experiment shows some skill

in predicting the rainfall variations associated with the ITCZ, mainly north of the

equator (where SST is predicted with more skill), and in Northeastern Brazil.

According to Figure 37a, CPGIC predicts the cross-equatorial SST gradient with

the best skill among the predictions, then PGIC, and finally the predictions initial-
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ized with Atlantic-only SSTs. Thus, the better the cross-equatorial SST gradient is

predicted, the better are predicted the rainfall anomalies in the ITCZ. This is con-

sistent with a large body of literature showing the link between the ITCZ position

(and intensity) and the cross-equatorial SST gradient, the main characteristic of the

gradient mode of variability (see Figure 20). These results confirm that the corrected

coupled model initialized with global SSTs is the configuration that better captures

the dynamics of the gradient mode.

Different AGCMs simulate differently teleconnections and local processes. Thus,

it is useful to have a measure of the maximum skill of a particular model to know

how close predictions are able to forecast climate within the context of a particular

model. To do so, we use a 10-member ensemble of GOGA integrations in which

the CCM3 model is forced with global observed SSTs. The correlation between the

rainfall simulated by this experiment and the observations gives an upper limit of

the model’s skill in predicting precipitation because SSTs are perfectly known in

advance. The GOGA experiment covers the period 1950-1994. Since the Xie-Arkin

data set is available from 1979 to 2000, the correlation is performed during the MAM

seasons of 1979 to 1994. Although it is not the same time period as that covered by

the prediction runs, the analysis allows identifying the regions where the CCM3 has

skill in predicting rainfall. Figure 42 shows the map of maximum correlation skill of

rainfall simulated by the CCM3 during MAM. The CCM3 shows large skill across the

Atlantic ITCZ region, and in the Caribbean. Here, we focus on the ITCZ. The shape

of the region with maximum precipitation skill is very similar to the region where the

CPGIC shows high skill (compare Figures 42 and 41b)). However, the latter shows

a maximum skill of r = 0.65, while the maximum skill reaches r = 0.9 in certain

areas. Thus, although CPGIC does a good job predicting rainfall, there is still room

to improve the skill of the coupled model (see next section).
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Fig. 42. Correlation between predicted and observed rainfall for GOGA experiment.

Contours and shading as in Figure 41. Values larger than r = 0.5 are signifi-

cant at the 95% level.

The Northeastern region of Brazil is the largest continental area where the CCM3

shows high skill in predicting rainfall during the MAM season. To further compare

precipitation skill among the prediction runs we constructed an index over North-

eastern Brazil as the average of the grid points shown in Figure 42. As expected from

Figure 41, the CPGIC shows largest skill with r = 0.59, while the PGIC shows signif-

icant skill with r = 0.48. The predictions initialized with Atlantic-only SSTs do not

show significant skill, mainly because they are not able to predict the cross-equatorial

SST gradient during MAM (Figure 37). A secondary effect may be the absence of

the direct ENSO influence on precipitation over Northeastern Brazil (see also below).

3. Covariability of errors in predicted precipitation and SST

In the previous section it was found that CPGIC has higher skill in predicting rainfall

than any other prediction experiment. The first order explanation is that CPGIC is

able to predict with largest skill the cross-equatorial SST gradient. Here we further

address this issue looking at the structure and evolution of the SST prediction errors

that covary with errors in the predicted precipitation. Rainfall prediction errors may
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arise due to systematic errors in the model, and due to an incorrect prediction of

SST. Here we want to identify those errors that arise due to errors in the predicted

SST only. Thus, rainfall prediction errors are defined as the difference between the

predicted rainfall and the simulated rainfall when perfect SSTs are imposed as bound-

ary conditions to the CCM3. The latter is calculated as the simulated rainfall of the

ensemble mean of a GOGA ensemble of integrations. For the SST field the error is

defined as the predicted SST minus the observed SST (imposed in GOGA runs). The

analysis is performed from 1982 to 1994, the common period shared by the predic-

tion runs and the GOGA integrations. We used a joint singular value decomposition

(SVD) analysis between the predicted SST error and the predicted rainfall error. The

SVD analysis is designed to find the coupled patterns that maximize the temporal

cross-covariance between two fields (see Bretherton et al. [1992] for an overview).

We compare the prediction errors of PGIC and CPGIC during MAM within the

tropical Atlantic. Note that errors may arise from local processes as well as from

remote teleconnections. Figures 43a and 43b show the leading covarying patterns of

errors in the predicted SST and rainfall for PGIC. This SVD explains 61% of the

squared covariance, and the time series associated with these patterns are correlated

at r = 0.95. The SVD consists of a large cross-equatorial SST gradient confined to the

deep tropics accompanied by a dipole of precipitation anomalies crossing the whole

basin along the equator. Thus, errors in the predicted rainfall are, to a first order

of approximation, dependent on the deep tropical SSTs, and the sign is consistent

with a shift of the ITCZ toward the warmer hemisphere. The time series associated

with this SVD are not correlated with SSTs outside the tropical Atlantic, showing

that the SVD involves only local processes. The non-corrected slab ocean does not

have any ocean dynamics, and thus, it is expected that it will tend to exaggerate

the importance of feedbacks between the SST and surface heat fluxes. This will tend
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Fig. 43. Leading SVD of covarying errors in predicted SST and rainfall during MAM

for (a), (b) PGIC, and (c), (d) CPGIC.

to favor an SST evolution with dipole-like characteristics, which may not be always

present in reality (see also section E). Therefore, rainfall could be predicted with

higher skill if the processes that govern the evolution of the SST in the deep tropics

can be better modeled. This is at least partially attained introducing the correction

in the SST equation of the slab ocean.

The leading SVD of prediction errors for the CPGIC is shown in Figures 43c and

43d. It explains 71% of the squared covariance, and the time series are correlated

at r = 0.84. The error in the predicted rainfall no longer shows a dipolar pattern.

The rainfall structure consists of a large anomaly that tends to be aligned along the

equator, and a smaller anomaly between 5-10◦S of opposite sign (Figure 43d). The

SST error pattern has largest loading in the TNA, and presents an SST gradient
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confined west of 20◦W (Figure 43c). In the ETSA, particularly to the east of 20◦W ,

the SST anomaly is relatively small and shows no clear structure, suggesting that

SST errors there do not contribute much to the precipitation error. Overall, in the

CPGIC, the first order source of rainfall errors is no longer a large cross-equatorial

gradient as in PGIC. This is consistent with the notion that the correction improves

the evolution of the SST gradient, as shown in the previous section. The correction

is most successful in the eastern side of the basin, and less so in the western side. In

the next section we show that the correction introduces a mode of SST variability

with largest loading in the eastern side of the basin, that explains the better skill of

CPGIC in predicting SST and rainfall.

The time series associated with the leading SVD of CPGIC are significantly

correlated at 95% level with SST prediction errors in the tropical Pacific during MAM.

Also, the symmetric rainfall pattern of Figure 43d is reminiscent of the direct influence

of ENSO on the tropical Atlantic ITCZ through an anomalous Walker circulation

[Saravanan and Chang , 2000; Chiang et al., 2002]. This suggests that rainfall errors

involve not only local processes, but also remote influences. Further support comes

from the non-significant correlation between the time series of the leading SVDs for

PGIC and CPGIC. Thus, particularly for the CPGIC experiment, an improvement

of SST prediction in the tropical Pacific and a better representation of the Atlantic

response to Pacific forcing may lead to a more skillful prediction of SSTs and rainfall

in the Atlantic.

E. Modes of SST evolution

In this section we shed light on the oceanic processes that are parameterized in the

correction matrix B. To do so we compare the EOFs of observed SST with the EOFs
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of SST calculated for the ensemble mean of each prediction experiment. We focus on

MAM season, because it is the peak of the gradient mode, and when the corrected

model shows largest skill. Since the equation for the slab ocean in the corrected

experiments includes the term BT the SSTs will evolve differently from those in the

non-corrected ones, and thus their respective EOFs are expected to be different. We

expect the EOFs of the corrected experiments to show larger similarity in spatial

structure and temporal evolution with the observed ones, which would explain the

higher skill in predicting SST and precipitation. It is worth noting, however, that the

observed EOFs will include signal as well as noise variance, while the EOFs of the

prediction experiments will mainly contain the signal part of the variance because the

ensemble mean is used.

1. EOFs of observed SST

The EOFs of observed SST in the region (60◦W-20◦E,20◦S-20◦N), as well as their

principal components are shown in Figure 44. The two EOFs are well separated from

the rest and explain 44% and 32% of the total variance. The dipole structure of the

leading EOF is very similar to the pattern of SST that characterizes the gradient

mode (Figure 20), but with less weight in the TNA. There are two main centers of

action, one next to the coast of Africa between 5◦-20◦S, and the other just south of

the equator in the longitudinal band between 25◦W-0◦E. North of this last center of

action there is a weaker SST anomaly of opposite sign next to the coast of Africa

at about 10◦N. The cross equatorial gradient of SSTs is accompanied by large cross-

equatorial surface winds (Figure 44e) as in Figure 20. The second EOF has loading

mainly in the TNA and is accompanied by northeasterly anomalies that support the

notion of atmosphere to ocean forcing (Figure 44f). Weak cross-equatorial winds can

also be seen in the westernmost side of the basin.
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A lag regression reveals large SST anomalies in the tropical Pacific and strong

winds in the TNA forcing the SST below during the previous season. Thus, this second

EOF appears to be the manifestation of ENSO influence on the TNA, in agreement

with previous studies [Enfield and Mayer , 1997]. A similar lag regression for the

leading EOF does not reveal a significant connection with the tropical Pacific. It

shows SST anomalies in the ETSA developing simultaneously with large surface wind

anomalies between the equator and 30◦S in the Atlantic basin (not shown). Significant

northeasterly winds are also present in the northern tropics (see also below). A

simultaneous regression, on the other hand, shows significant correlation with the

Pacific basin in the Niño3 region. Thus, this mode is largely locally generated, but

may also be remotely connected to the equatorial Pacific.

To investigate how the leading mode of SST is generated and how it interacts

with the atmosphere, we considered the terms of the linearized equation for the tem-

perature tendency

∂T ′

∂t
= −ū

∂T ′

∂x
− v̄

∂T ′

∂y
− w̄

∂T ′

∂z
− u′∂T̄

∂x
− v′∂T̄

∂y
− w′∂T̄

∂z
+ Q′. (4.11)

The net surface heat flux Q′ includes the latent, sensible and radiative fluxes.

In the previous chapter we have shown that the wind-induced latent heat flux is the

dominant mechanism through which heat fluxes interact with SST in the tropical

Atlantic, consistent with the literature. Thus, in this study, we consider the wind

speed variability as a good indicator of surface heat flux.

The advective terms in equation (4.11) involve the velocity u of the upper ocean.

The velocity can be decomposed into a geostrophic part and an Ekman part. Here we

will only consider the latter because of the lack of hydrographic data. The horizontal

Ekman currents uH
E are that part of the total field that balances the wind stress.

Since the balance depends on the Coriolis acceleration, it is singular at the equator
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where the Coriolis parameter f = 0. To avoid this singularity a frictional term is

included in the balance [Zebiak and Cane, 1987]. As a result the horizontal Ekman

transport (UH
E =

∫ 0
−H uH

Edz, H the depth of the Ekman layer) can be written as

UH
E = (UE, VE) =

1

ρ(f 2 + γ2)
(fτy + γτx,−fτx + γτy), (4.12)

where ρ is the density of ocean water. The parameter γ is the damping time scale

associated with the frictional term included in the balance. We used a value of

γ = 0.5day−1 as in Zebiak and Cane [1987] and Sterl and Hazeleger [2003]. The

Ekman pumping velocity is calculated assuming that the Ekman transport is non-

divergent. Thus,

wE = ∇.UH
E . (4.13)

Note that setting γ = 0 in equation (4.12) we recover the usual form of the

Ekman transport. The equation for the SST tendency thus results in

∂T

∂t
� −ūE

∂T ′

∂x
− v̄E

∂T ′

∂y
− u′

E

∂T̄

∂x
− v′

E

∂T̄

∂y
− w′

E

∂T̄

∂z
+ Q′. (4.14)

The term involving w̄ has been dropped because it involves knowledge of the

vertical structure of the ocean that is not available to us. We do not imply that

this term is not important in the generation of the leading EOF of SST, but its role

will be addressed in future work. The climatological vertical temperature gradient

is considered constant and we approximate ∂T̄
∂z

� ∆T
H

� 2K
50m

following Sterl and

Hazeleger [2003], which is a conservative estimate for equatorial regions.

The SST variability is the time integral of the SST tendency. Thus, SST anoma-

lies lag the terms of the SST tendency equation. Since we are trying to explain the

origin of seasonally averaged SST anomalies, the SST variability may be related to

the tendency terms within the same season (MAM), or be a response from the pre-
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vious season (December-January-February, DJF). A lag regression of each tendency

term indicates that only wind-speed anomalies and Ekman pumping during DJF are

significantly correlated with the SST anomalies of the leading EOF (not shown). The

lag regression reveals significant wind speed anomalies on both hemispheres suggest-

ing an atmospheric forcing origin to the off-equatorial SST anomalies seen in Figure

44a. These wind anomalies weaken in MAM (see below). On the other hand, on

the equatorial region wind speed and Ekman pumping anomalies in DJF are simi-

lar but weaker than during MAM. Thus, the SST anomaly there is related to the

tendency terms mainly within the MAM season, and is not likely to depend only on

wind-induced heat fluxes.

The simultaneous regression of the six terms of the tendency equation (4.14)

onto the time series associated with the leading EOF of observed SST during MAM

are shown in Figure 45. In agreement with the wind pattern shown in Figure 44e

there is a large anomaly in the wind speed in the western and central region mainly

to the south of the equator. The wind speed anomaly is broad and further west

from the maximum SST anomaly. Thus, we do not expect the heat flux to create

such a localized SST anomaly, but it helps in sustaining the SST off the equator.

The inspection of the advective terms shows that the Ekman pumping is the most

important term generating the SST anomaly on the equatorial region associated with

the leading EOF.

Large anomalous downwelling in a region of climatological upwelling creates the

warm SST anomaly south of the equator. A separation of Ekman pumping into the

contributions due to the wind stress components indicates that zonal wind stress

anomalies are largely responsible for the SST anomaly with maximum just south of

the equator at about 15◦W. Meridional wind stress anomalies generate a weaker Ek-

man pumping with maximum next to the African coast at about 5◦S (not shown).
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Shading indicates significance at the 95% level. In (a) the units are 10−1ms−1,

and in (b)-(e) the units are 10−8Ks−1. Note that in (b) contour interval is

double from that of (c)-(e).
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The other advective terms are relatively small. Advection of anomalous tempera-

ture by the mean zonal currents damps the equatorial SST anomaly to the east and

strengthens it to the west, thus tending to shift it westward. The advection of mean

temperatures by anomalous zonal currents is negligible. The advection of anomalous

temperature by the mean meridional currents tends to help the development of east-

ern equatorial SST anomalies, and damp western equatorial SSTs. The term −v′
E

∂T̄
∂y

contributes to warming eastern equatorial SSTs, and damp SST anomalies poleward

of about 5◦S.

2. EOFs of predicted SST

Figure 46 shows the two leading EOFs during boreal spring calculated for the ensemble

mean of each prediction experiment. The correlations of the associated principal

components with the observed principal components are summarized in Table VI.

In all cases the EOFs explain together close to 80% of the total variance as in

observations. The spatial structures and time evolutions are, however, dependent on

the prediction experiments. In PAIC the SST evolution is largely dominated by the

leading EOF that explains 60% of the total variance. The spatial pattern is dipole-

like with largest weight in the western equatorial Atlantic (Figure 46a). The second

EOF is close to a monopole (Figure 46b). The time series associated with these EOFs

show no significant correlation with the time series of observed EOFs (Table VI).

In PGIC the two patterns explain similar amounts of variance (Figures 46c and

46d). The first EOF has SST anomalies of same sign across the basin with largest

weight in the cold tongue region. Its corresponding principal component is correlated

with the PC of the second observed EOF at r = 0.48. The pattern of the second

EOF of PGIC looks very close to the leading EOF of PAIC, and shows no correlation

with observed EOFs. The time series associated with the third EOF of PGIC is
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Table VI. Correlation between principal components of EOFs of observed SST

(P1-OBS, P2-OBS) and principal components associated with EOFs of pre-

dicted SST for each prediction experiment. The “*” indicate correlations

not significant at the 95% level.

P1-OBS P2-OBS

PAIC P1 * *

P2 * *

PGIC P1 * 0.48

P2 * *

CPAIC P1 * *

P2 0.45 *

CPGIC P1 * 0.55

P2 0.64 *
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Fig. 46. Leading EOFs of predicted SSTs for PAIC (a,b), PGIC (c,d), CPAIC (e,f)

and CPGIC (g,h).
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significantly correlated at 95% level with the first observed EOF. However, it explains

only 8% of the variance and SST anomalies are confined south of 5◦S (not shown).

The corrected prediction experiments show very interesting results. The EOFs

of the CPAIC explain 44% and 34% of the total variance respectively. The leading

EOF resembles the first EOF of PAIC but the SST anomaly is confined to the western

side of the basin. The spatial structure of the second EOF is more revealing. It is

distinct from the EOFs of either of the non-corrected experiments. It shows a dipole-

like structure with largest loading in the cold tongue region and a second maximum

in the TNA at about 10◦N next to the coast of Africa. This pattern is similar to

the leading EOF of observed SST and their time series are significantly correlated

at 95% significance level (Table VI). This EOF seems to include a representation of

the interaction between the SSTs next to Africa and the central equatorial Atlantic,

which increases the correlation skill of the corrected predictions in these regions.

The corrected experiment with global initial conditions (CPGIC) shows EOFs

that are even more similar to the observed ones. The leading EOF explains 52% of

the total variance. Its structure is similar to the second observed EOF and their time

series are correlated with r = 0.55. The second EOF explains 30% of the total variance

and looks very close to the second EOF of CPAIC. It is correlated to the first observed

EOF with r = 0.64, significant at 99% level. The correlation between the principal

component and the observed SSTs is largest in the deep tropical Atlantic, showing

that the second EOF of CPGIC captures the variability of the cross-equatorial SST

gradient.

In summary, the second EOFs of the corrected experiments are similar in struc-

ture and are significantly correlated to the leading observed EOF. Moreover, the

non-corrected predictions do not show such a pattern, and none of their leading

EOFs are correlated with the first EOF of observations. This points to the fact that
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the non-corrected experiments lack the physics responsible for the generation of the

SST anomalies associated with the first observed EOF, which in the previous sec-

tion was found to be consistent with Ekman dynamics. This is particularly true for

the SST anomaly in the equatorial region; off-equatorial SST anomalies are mainly

driven by wind-induced heat fluxes. Therefore, we conclude that matrix B includes a

parameterization of the Ekman dynamics. This is true to the extent that the analy-

sis presented in section E.1 represents well the variability of observed SST. Matrix B

could also include a parameterization of terms involving w̄, which were not considered

in our previous analysis.

It is worth noting that in the corrected experiments anomalous atmospheric heat

fluxes are still the most important factor controlling the evolution of the SST (their

leading EOF). The parameterized ocean dynamics appears mainly in the second EOF,

contrary to observations, probably because of the indirect way it was introduced in

the model. However, the parameterization of Ekman dynamics is still important

because it allowed the corrected model to simulate better the evolution of SSTs, thus

showing higher skill than the non-corrected experiments.

Finally, we found that CPAIC shows a second EOF related to ocean dynamics

that is correlated to the leading EOF of observed SST. On the other hand, CPGIC

shows a similar pattern but is better correlated to observations. Thus, this supports

the idea that the processes generating the first EOF of SST are local, but can be

influenced by remote SSTs. The mechanism involved deserves further study, but is

beyond the scope of this work.

We next consider the difference between the predicted SST in CPGIC and PGIC.

The difference in evolution is due to the correction term introduced in CPGIC (as-

suming the noise has been filtered). Figure 47 shows the leading EOF of the SST

difference during boreal spring, which explains 52% of the total variance. The spatial
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Fig. 47. Leading EOF of the SST difference between CPGIC and PGIC during MAM.

structure is very similar to the second EOF of PGIC and, in agreement with the

EOFs shown in Figure 46, hints that PGIC tends to present stronger cross-equatorial

SST gradients than CPGIC. This suggests that, during MAM, the role of the ocean

(correction) is that of weakening the thermodynamic air-sea feedback between SST

and the surface heat flux in the equatorial region.

To further investigate this, we constructed a composite of SST and surface winds

for the extreme years of the time series associated with the pattern of Figure 47,

and in which CPGIC is closer to observations than PGIC according to the AC. This

results in the following positive years (1995, 1996, 1999), and negative years (1987,

1992, 1997, 1998). Figure 48 shows the composite of observations, PGIC and CPGIC

for the months of December, February and May. In December the SST of the three

data sets are very similar because the predictions are initialized with observed initial

conditions. In February, the observations show northerly cross-equatorial winds ac-

companied with a weak SST gradient. On the contrary, PGIC has developed a large

cross-equatorial SST gradient in the western side of the basin with southerly surface

winds, that is, the opposed of observations. CPGIC also presents the wrong cross-

equatorial gradient, but is much weaker. In May, observations show large positive
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SST anomalies in the TSA with largest weight just south of the Equator, and negative

SST anomalies in the TNA. The predicted SST and winds in PGIC during May have

opposite sign from observations, thus tending to shift the ITCZ in the wrong direction.

This is result of the strong positive feedback existing in PGIC that makes anomalies

persist in the western side of the basin. In CPGIC, on the other hand, the predicted

SST has the same sign and a similar shape as the observations. Consequently, the

cross-equatorial winds are in the right direction and the ITCZ is shifted southward.

This demonstrates that the ocean dynamics (correction) opposes the thermodynamic

feedback, and is even able to change the sign of the cross-equatorial SST gradient.

The initial conditions are fundamental to determine the relative importance of these

two processes in the evolution of the SST.

The analysis of the leading observed EOF suggested that Ekman pumping is the

most important term generating SST anomalies in the equatorial and cold tongue

regions. We can test if Ekman pumping is responsible for the observed SST evolution

shown in Figure 48 by constructing a composite of the SST evolution given only by

the Ekman pumping term, that is,

T (t) = T (0) −
∫ t

0
w′

E

∂T̄

∂z
dt, (4.15)

with T (0) the December SST. Figure 49 shows the composite of SST considering only

the Ekman term, and the composite of observed SST.

Clearly, the evolution of the equatorial SST given by the Ekman pumping term

only is very similar as that of the observed SST. The shape of the SST anomaly is very

similar and has largest amplitude in May along the equatorial and cold tongue regions.

The magnitude of the SST anomaly given by the Ekman pumping term is, however,

about half of the observed one in May. This difference may be partly attributed

to the chosen climatological value of the vertical temperature profile ∂T̄
∂z

= 2
50

Km−1,
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Fig. 48. Composite of SST and surface winds for observations (left panels), PGIC

(middle panels) and CPGIC (right panels). The years used in the composite

are extreme years of the EOF shown in Figure 47. Note that in the left panels

the SST contours are 0.2K, while in the other panels the contours are 0.1K.
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Fig. 49. Composite of observed SST (left panels), and the contribution of the Ekman

pumping to SST evolution (right panels). The years used in the composite

are extreme years of the EOF shown in Figure 47.
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which is a conservative estimate for the equatorial region. Other ocean processes like

meridional advection may also contribute to the generation of the SST anomaly. Note

that, as expected, the Ekman pumping is not important in the off-equatorial regions,

where surface heat flux dominates the SST variability. Overall, this analysis further

supports the hypothesis that the correction includes a parameterization of Ekman

dynamics, and particularly of the Ekman pumping term.

F. Summary

In this study we test the importance of ocean dynamics, and propose a new methodol-

ogy to improve seasonal climate prediction in the tropical Atlantic. We use an AGCM

coupled to a slab ocean, a configuration that was shown to have skill for prediction of

SST in the tropical Atlantic, particularly in the TNA region [Chang et al., 2003a]. We

hypothesized that the low skill of the model in the equatorial and cold tongue regions

can be attributed to the absence of ocean dynamics in the slab ocean. To improve

the coupled model we developed a technique to introduce a statistical correction to

the slab ocean that parameterizes the heat transport due to anomalous linear ocean

dynamics. The main results are:

• The corrected predictions outperform the non-corrected predictions in the ETSA

particularly at long lead times. This result indicates that the correction intro-

duced in the slab ocean is successful in improving the prediction in that area,

and points to the importance of ocean dynamics in the prediction of tropical

Atlantic SSTs.

• The ATL3 index, which characterizes the zonal mode, is predicted in the cor-

rected experiments with higher skill than in the non-corrected experiments.

However, persistence is a better forecast model up to May, suggesting that the
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correction does not parameterize all the processes governing the dynamics of

the zonal mode.

• The predicted gradient index is better than persistence for almost all lags if

the system is initialized with global SSTs, pointing to the importance of the

remote influence from ENSO. Furthermore, highest skills are obtained for the

corrected experiment (CPGIC). The correlation skill of CPGIC peaks in MAM

reaching values close to r = 0.7, showing that this experiment represents very

well the dynamics of the gradient mode. As result of the good prediction of the

cross-equatorial SST gradient, CPGIC shows high skill in predicting rainfall

anomalies in the ITCZ region during MAM across the Atlantic basin.

G. Discussion

The processes identified to be responsible for the evolution of equatorial SST anoma-

lies associated with the leading EOF of observed SST during MAM are consistent

with Ekman dynamics. Ekman pumping is particularly important for the observed

evolution of the SST in the equatorial and cold tongue regions. We hypothesize that

an Ekman feedback may be present, and that it may lead to enhance SST predictabil-

ity in the TSA. This process requires a coupling between the surface winds and ocean

currents, such that anomalous (mainly zonal) winds drive anomalous currents cre-

ating an horizontal divergence and thus anomalous Ekman pumping. The Ekman

pumping (with the additional help of other advective terms) changes the SST. Subse-

quently, the winds respond to the hydrostatic pressure gradient generated by changes

in SST, closing the loop. Matrix B seems to include a parameterization of this pro-

cess, allowing the corrected model to better represent the evolution of SST anomalies.

Further investigation with ocean models that explicitly incorporate Ekman dynamics
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is needed.

We also found that, during MAM, the role of the ocean (correction) in the pre-

dictable dynamics of TAV is that of weakening the thermodynamic air-sea coupling

between SST and heat flux in the equatorial region. This is consistent with previous

studies of the role of ocean dynamics in regulating the SSTs associated with the gra-

dient mode of variability. In an observational study Chiang et al. [2002] propose that

while the role of the positive feedback is to sustain the SST gradient during boreal

spring, the ocean heat transport in the equatorial region works against it preventing

the gradient to persist into the next season. Recent modeling studies with ocean

GCMs also support this notion. Studies by Chang et al. [2001], and Seager et al.

[2001] suggest that the heat transport associated with the mean ocean circulation

opposes the positive feedback and weakens the cross-equatorial SST gradient during

MAM.

A better understanding of the importance of upper ocean processes in the pre-

diction of SST anomalies requires the use of a hierarchy of coupled modes. This will

allow a systematic separation of the different mechanisms operating in TAV. Never-

theless, the prediction experiments presented here demonstrate that coupled with a

corrected slab ocean, an AGCM has large skill for prediction of SST and precipita-

tion in the tropical Atlantic several months in advance. This is very encouraging for

seasonal climate prediction in the tropical Atlantic during boreal winter and spring.
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CHAPTER V

SUMMARY AND OPEN ISSUES

The overall goal of this study is to shed light on the physical processes that govern the

variability and those that may enhance climate predictability in the Atlantic basin.

The focus is on ocean-atmosphere interactions on seasonal-to-interannual time scales.

Two main regions are studied: the South Atlantic convergence zone (SACZ), and the

tropical Atlantic. In this section we summarize our findings and discuss some open

issues that are desirable be addressed in future studies.

A. South Atlantic convergence zone

In Chapter II we investigated the interannual variability of the SACZ region during

austral summer. An attempt was made to separate the total variance of the region

into a forced component due to SST forcing (signal), and an internal component due

to atmosphere internal variability and land-atmosphere interactions (noise).

Two main signals were detected: a locally forced signal located mainly in the

oceanic portion of the SACZ consisting in a shift and strengthening of the SACZ

toward anomalously warm waters, which varies on interannual-decadal time scales.

The second signal is related to ENSO, and consists in a northeastward shift of the

SACZ during warm events.

The leading mode of interannual internal variability of rainfall in the SACZ re-

gion shows a strengthening/weakening of the SACZ with an anomaly of opposite sign

to its southwest. A potential predictability analysis reveals that the land portion

of the SACZ is primarily dominated by internal variability, thereby having limited

predictability at seasonal time scales. This result can be tested using the prediction
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experiments of Chapter IV. An index for precipitation in the SACZ was constructed

over the land portion of the region (40◦-48◦W,15◦-22◦S), which is the area of maxi-

mum observed variability (see Figure 2f). None of the experiments, either corrected

or non-corrected, shows significant skill in predicting rainfall over that region during

March. The correlation skill during January-February is largely independent on the

introduction of the correction. The prediction experiments with global initial condi-

tions have a correlation skill of 0.43 (PGIC), and of 0.46 (CPGIC), which are very

close to the 95% significance level (0.45). The prediction experiments with Atlantic-

only initial conditions (PAIC, CPAIC) show non-significant skill. These results clearly

show that rainfall in the SACZ is very difficult to predict. Also, while local SSTs may

add some predictability, the majority of the predictability in the region tends to come

from the ENSO forced signal.

There are several open issues that need to be addressed to further understand

the SACZ variability and predictability:

1. Two precipitation forced signals were identified in the SACZ during austral

summer. Is there a subseasonal dependence in the occurrence of the signals? In

the prediction experiments of Chapter IV the ENSO forced signal tends to occur

at the beginning of the season. This may indicate a subseasonality in the signal,

or may be due to a wrong representation of the teleconnection from the Pacific

due to a non-perfect SST prediction there. We performed a preliminary signal-

to-noise analysis for each month of the summer separately using the output

from the CCM3. The analysis suggests that the ENSO-forced signal tends to

be largest in January, while the local SST-forced signal dominates in February-

March. Further investigation is needed.

2. The SACZ has been shown to have large intraseasonal variations linked to the
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propagation of mid-latitude disturbances into the region [Liebmann et al., 1999],

and to the Madden-Julian Oscillation [Paegle et al., 2000]. In this study we

focused on the forced atmospheric response to the varying SSTs, because we

are interested in the predictable part of the variance on interannual time scales.

Also, the forced response can be considered in a first order approximation to be

separated from the intraseasonal variability which mainly comes from internal

dynamics. It is, however, worth exploring if the intraseasonal variability, mainly

those associated to the Madden-Julian Oscillation, can add predictability on a

monthly time scale to the SACZ.

3. Throughout this study we have not considered the impact of soil moisture on

the predictability of precipitation in the SACZ. A high soil moisture content

(may be product of anomalous rainfall) can produce higher evaporation, which

in turn can induce additional precipitation through both local recycling and

changes in the global circulation. If this land-atmosphere feedback does in fact

operate, it may allow the translation of soil moisture anomalies into seasonal

predictions of precipitation [Koster et al., 2002]. Koster et al. [2000] have shown

that the SACZ is in fact one of the regions in which the foreknowledge of the

soil moisture state increases the predictability of precipitation. Thus, the study

of land-atmosphere interaction may hold the key to improve rainfall prediction

in the continental part of the SACZ.

B. Tropical Atlantic

Chapter III investigates the role of extratropical atmospheric variability on tropical

Atlantic variability. It is found that the IAV of the SH can play a pre-conditioning

role on the onset of the gradient mode, the main mode of coupled ocean-atmosphere
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variability in the tropical Atlantic. The strong SH winter IAV generates an SST

anomaly with maximum amplitude in the subtropical region through anomalous heat

fluxes. After that initial kick, a positive air-sea feedback maintains and moves the

center of maximum SST anomalies equatorward. As result, an SST dipole develops in

the deep tropics in the following boreal spring, while the subtropical SST anomalies

are damped out by heat losses.

A similar behavior results from the remote effect of the NAO, which peaks in

austral summer. The differences are (1) that the SST anomalies created by the NAO

in the TNA are larger than those created by the SH IAV in the TSA, and (2) the

positive air-sea feedback does not seem to be able to induce an SST anomaly of

opposite sign in the TSA.

These findings emphasize the large influence that remote processes have in TAV.

However, they also indicate that the positive air-sea thermodynamic feedback is in-

strumental to “move” the SST anomalies equatorward and create a cross-equatorial

SST gradient (which will affect the position and intensity of the ITCZ). In the case

of the influence of SH IAV on TAV, this mechanism could be of fundamental impor-

tance for enhancing seasonal climate predictability in the tropical Atlantic, since it

would allow prediction of SST anomalies several seasons in advance. A number of

issues, however, need to be addressed before this potential for prediction can be used

in actual forecasts. One of particular interest is:

1. Which are the SST precursor patterns during austral winter-spring that will

excite the air-sea feedback in the deep tropics? Our results indicate that SST

anomalies in the western side of the basin are very important, because it is on

this side that the positive air-sea feedback is present. Is this a model-dependent

result? Why is the local positive air-sea feedback localized on the western side
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of the basin? Chang et al. [2000] argue this is because that is the location of

the western Atlantic warm pool where the atmosphere is coupled to the SST

and strong convective activity is possible. There, latent heat dominates surface

heat flux variability, and the positive feedback occurs between the wind-induced

latent heat flux and the SST. The extension of deep convection from the South

American continent into the tropical Atlantic may also be a factor. Sensitivity

experiments are needed to address this issue.

Besides the local positive air-sea feedback, the tropical Atlantic SST has at least

one more source of predictability: the ENSO phenomenon [Chang et al., 2003a].

In Chapter IV we investigated the seasonal predictability of TAV using an AGCM

coupled to a mixed layer, a model that incorporates both mechanisms. We developed

a methodology to introduce some of the effect of linear ocean dynamics into the

slab ocean as an anomalous Q-flux. The objective was to test the importance of

ocean dynamics in TAV and improve the prediction of SSTs. Results show that when

initialized with global SSTs the corrected coupled system (CPGIC) shows large skill

in predicting SSTs in the tropical Atlantic up to six months in advance. The skillful

SST prediction translates to a skillful forecast of rainfall in the ITCZ region during

boreal spring. In addition, the corrected predictions outperform the non-corrected

ones in the ETSA at all lags. These results underscore the importance of ocean

dynamics in the predictable dynamics of TAV, and raise the following questions:

1. What ocean dynamical processes are included in the correction? Analyses sug-

gest that the correction represents mainly a parameterization of Ekman dynam-

ics. We hypothesize that an Ekman feedback involving the coupling between

surface winds, ocean currents and SST may be present during MAM. A way to

test this hypothesis is to include a new term in the equation of the slab ocean
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that explicitly calculates the Ekman pumping (the most important term) using

the predicted winds at each time step.

What about the ocean processes related to the zonal mode? Although the

corrected experiments outperform the non-corrected experiments in predicting

the ATL3 index, they are not able to beat persistence before June. Why does

the ATL3 persist for so long? Interestingly, the persistence of ATL3 is very

large up to May, and afterwards decreases very fast. On the other hand, in

the corrected experiments the correlation skill of ATL3 is almost constant from

February to August. These results may point to different ocean processes being

relevant in the different seasons in the equatorial Atlantic, and the correction

parameterizes only some of them. Experiments with ocean GCMs are needed to

further address these issues. This investigation will hopefully determine which

is the relevant ocean dynamics in TAV in the different seasons, hence guiding

the development of future coupled system for dynamical seasonal prediction in

the Atlantic basin.

2. The leading EOF of observed SST in the tropical Atlantic during MAM shows

significant correlation with tropical Pacific SSTs in the same season. How do

ocean basins interact? Can the Atlantic Ocean force Pacific SSTs? How does

the ENSO signal interfere with local Atlantic Ocean dynamics?
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APPENDIX A

PREDICTABILITY AND SIGNAL DETECTION

1. Types of predictability problems

There are two types of predictability problems. Predictability studies of the first

kind address how the uncertainties in an initial state of the climate system affect

the prediction of a later state. For example, in weather forecasting the error in the

initial state amplifies with time limiting the useful predictability to about two weeks.

Because of the inability to forecast individual weather events beyond this limit, the

goal of climate forecasting is to predict the statistical properties of weather. The

first order factor in the first kind of predictability of climate is the specification of

the initial state of the ocean, which may provide “memory” to the system. Other

factors such as soil moisture and snow cover may also be important. Predictability

studies of the second kind address the predictability of the climate system to changes

in boundary conditions. Predictability of the second kind does not depend on the

initial conditions. In this case, the predictability is limited by the fact that the

boundary conditions do not uniquely determine the climate. For example, given a

configuration of sea surface temperatures, the internal atmospheric variability renders

a multitude of atmospheric states that are consistent with it. An SST anomaly results

in a predictable atmospheric response only if it reduces the uncertainty as to which

a certain atmospheric state may occur to less than the climatological uncertainty

[Schneider and Griffies, 1999]. This is particularly true in the tropics where the

*Portions of this appendix are reprinted with permission from the lec-
ture Predictability and detection problems, by R. Sutton, National Cen-
ter for Atmospheric Research Summer Colloquium 2000. Available at
http://www.asp.ucar.edu/colloquium/2000/lecturesTOC.html
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atmosphere is strongly coupled to the ocean, and SST anomalies are able to induce

an atmospheric response. Both kinds of predictability studies require of a model to

provide a prediction.

But, how can we define predictability? Predictability is concerned with the

reduction of uncertainties, in other words, we hope that our prediction will tell us

more than we already knew. We must therefore ask to what extent does a forecast

reduce our uncertainty? To answer that question we need to define a quantitative

measure that compares our knowledge before (prior uncertainty) and after the forecast

(posterior uncertainty).

For Gaussian systems the standard deviation, σ, is the appropriate measure of

uncertainty. Assume x is a univariate gaussian variable. Then, if xf is an unbiased

forecast of x with error e = x − xf , then < e >= 0 and the uncertainty is σf =
√

< e2 > (“<>” denote mean). The prior knowledge is usually the climatological

mean with associated uncertainty σc. Following Schneider and Griffies [1999] the

predictive power of the forecast can be defined as

Predictive Power = 1 − σf

σc

. (A.1)

Thus, the smaller the posterior uncertainty (σf ) the larger the predictive power.

A perfect forecast has σf = 0, while the climatological mean forecast has σf = σc.

A more general definition of the predictive power for multivariate and non-gaussian

systems can be found in Schneider and Griffies [1999].

2. Predictability of the first kind

The evolution of the system can be represented by a trajectory in the phase

space. Then, the growth of forecast errors is related to the divergence of initially close

trajectories. Chaotic systems, like the extratropical atmosphere, exhibit sensitivity
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to initial conditions that leads to forecasting errors growing exponentially with lead

time.

To make a prediction of the first kind two things are needed: knowledge of the

current state of the system, and a model. Since observations provide an uncertain

estimate of the current state, we can locate the system only within some finite region

of the phase space. Thus, the initial condition is not uniquely determined. The

best way to circumvent this difficulty is to make several predictions starting from

very close but different initial conditions. This is called an ensemble forecast. As

result, the ensemble forecast produces an ensemble of states that form a sample of

the distribution representing uncertainties in the prediction at different lead times.

On seasonal-to-interannual time scales the initial state of the ocean is fundamen-

tal in determining the evolution of the climate system. This is because the ocean

varies on longer time scales than the atmosphere, thus providing the memory to the

coupled system. In the tropics coupled ocean-atmosphere interactions can amplify

initial anomalies, and produce large spatially coherent SST anomalies that will force

the atmosphere. Examples of ocean-atmosphere coupling are those characteristic of

ENSO in the Pacific [Philander , 1990], and the thermodynamic air-sea interaction

in the Atlantic [Chang et al., 1997]. The result of the atmosphere-ocean coupling is

a climatic signal that can be predicted several seasons in advance [Goddard et al.,

2001]. To detect the signal, and therefore the predictable part of the evolution of

the climate system, the ensemble mean of an ensemble forecast is calculated. The

ensemble mean is usually considered the best climate prediction because it averages

over the many possible initial states and filters out the noise always present in the

system. If the system is linear, and in the hypothetical case of an infinite ensemble,

the ensemble mean will only contain the evolution of the coupled signal. A measure

of the uncertainty of the prediction is given by the spread of the ensemble members
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around the mean.

3. Predictability of the second kind and detection of the climate response to external

forcing

Consider a covariance stationary climate. Then, its statistics do not depend on

the initial conditions, and are entirely determined by the boundary conditions and

the laws of physics. Hence, we can express the climate statistics c as a function of

some external parameters:

c = f(external parameters)

The parameters may correspond to physical variables like SST, or model vari-

ables. The problem of understanding climate, can then be viewed as the determination

of the function f .

a. Time independent problem

Consider two climate model simulations which differ only in the value of a single

external parameter α

c1 = f(..., α1)

c2 = f(..., α2)

To identify any response we must determine how precisely the statistic of interest

can be estimated. Or, similarly, how much data do we need to achieve a desired level

of confidence?

For gaussian variables the response to changes in external parameters can be of

three types: a change in the mean, a change in the variance, or a change in both

of these two quantities. For non-gaussian variables the response may also consist in



169

introducing a bias in the possible regimes, thus favoring some regimes against others.

Here we will consider changes in the mean, but other statistics of the response may

also be of importance.

Consider an univariate random variable x with (unknown) mean value x and

variance σ2. Suppose we take n measurements xi, i = 1...n. The sample mean, x̄, is

an unbiased estimate of x. The expected error in the calculation of the mean, σm can

be estimated as follows

σ̂2
m =

1

n
σ̂2 =

1

n(n − 1)

n∑
i=1

(xi − x̄)2 (A.2)

where σ̂2 is an estimate of the population variance (the “hat” denotes estimated

quantities).

Suppose now that some variable x in climates c1 and c2 has mean values x1

and x2, and the same variance σ2. To detect a change in the mean value of x we

require that the ratio x̄2−x̄1

σ̂m
be above a certain threshold. A student’s t-test can be

used to assess statistical significance. Note that σ̂m depends on the sample size n.

Therefore, the more data we have the weaker the signal we can detect at a given level

of confidence.

The ratio defined above is not an intrinsic property of the system because it

depends on sample size. Instead, we can define the signal-to-noise ratio, which is a

physical measure of signal strength, and can be estimated as x̄2−x̄1

σ̂
.

b. Time dependent problem

i. Signal-to-noise optimization technique

In this section we present a methodology for characterizing the time-varying

response to a time-varying external forcing in a system subject to internal chaotic

dynamics. The technique is a signal-to-noise optimization procedure developed by
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Venzke et al. [1999] and Allen and Smith [1997].

We define the forced response to a time-varying external forcing (here, SST)

as the component of the evolution of the system that is independent of the initial

conditions and is therefore common to all members of a hypothetical infinite ensemble.

We assume that on the time scales of interest the evolution of the system can be

considered as a linear superposition of the forced signal and the internal variability.

Interaction between the two components is not considered. The methodology also

assumes that variables have gaussian distributions.

In this work we apply this technique mainly to AMIP-type of simulations. In

these experiments the SST is imposed, but the land surface interacts freely with the

atmosphere. Thus, the internal part includes internal atmospheric variability as well

as variability of the land surface and its effects on the atmosphere. The external

signal is due to SST forcing alone. During this study we will usually refer the internal

variability as atmospheric internal variability. However, it is important to keep in

mind that is also includes land-atmosphere interaction.

Suppose we construct a K-member ensemble of model simulations using an

AGCM forced with observed time-varying SST. Let 	x be a state vector of dimension

m and X a mxn matrix describing the evolution of 	x (the index n = 1...N denotes

time). Due to the linearity assumption we can write for each ensemble member k

Xk = XF + Xk
N k = 1...K. (A.3)

The forced atmospheric response XF to SST forcing is assumed to be the same

for all ensemble members, while the internal atmospheric variability denoted as Xk
N

is different for all members. The ensemble mean XM is

XM =
1

K

K∑
k=1

Xk = XF +
1

K

K∑
k=1

Xk
N . (A.4)
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Although the actual realizations of the internal variability (or noise) are different

for all members, their statistics are assumed to be the same. Here we consider that

the internal variability is white in time. Since the noise is by definition independent

of the forced signal we can write

CM = CF +
CN

K
, (A.5)

where CM is the covariance matrix of the ensemble mean, CF is the covariance matrix

of the forced signal, and CN is the covariance matrix of the noise. The latter can

be estimated as the covariance matrix of the deviations of the ensemble members

respect to the ensemble mean. Alternatively, CN can be estimated from the output

of an atmospheric GCM forced with climatological SSTs.

An EOF analysis can be applied on CM . But, are the eigenvectors of CM equal

to the eigenvectors of CF ? Suppose 	v is an eigenvector of CF with eigenvalue λF .

Then,

CM	v = CF	v +
CN

K
	v = λF	v +

CN

K
	v. (A.6)

If and only if the noise is white in space, that is CN = Kσ2
NI, then CM	v =

(λF + σ2
N)	v, and 	v is an eigenvector of CM . In reality, the internal atmospheric

variability is highly correlated in space and therefore the EOFs are strongly influenced

by the noise. The main idea behind the technique presented below is the use of the

information about the spatial structure of the noise to calculate a more accurate

representation of the forced signal.

The objective of the signal-to-noise optimization procedure is to find a vector 	S

such that the variance of the forced response along 	S is maximized relative to the noise

variance along the same direction. Hence, we need 	S such that the signal-to-noise

ratio
σ2

F

σ2
N

is maximum. But, using (A.5),
σ2

M

σ2
N

=
σ2

F

σ2
N

+ 1
K

. Thus, given K, maximizing
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σ2
F

σ2
N

is equivalent to maximizing
σ2

M

σ2
N

.

Let F be such that F tCNF = KI (“t” denotes transpose of a matrix). F is

a “pre-whitening” filter, which removes the spatial correlations making the noise

spatially white (it was assumed temporally white already). The covariance matrix of

the noise can be written

CN =
√

K(F t)−1
√

KF−1, (A.7)

and

	StCN
	S =

√
K	St(F−1)t

√
KF−1	S =

√
K(F−1	S)t(F−1	S)

√
K = K 	S ′t 	S ′, (A.8)

where 	S ′ = F−1	S. Also,

	StCM
	S = (F 	S ′)tCMF 	S ′ = 	S ′tF tCMF 	S ′. (A.9)

Using Eqns. A.8 and A.9 the S/N ratio to maximize can be expressed as

σ2
M

σ2
N

=
	StCM

	S

	StCN
	S

=
	S ′tF tCMF 	S ′

K 	S ′t 	S ′
=

	S ′tC ′
M

	S ′

K 	S ′t 	S ′
= R(	S ′). (A.10)

Matrix C ′
M = F tCMF is the pre-whitened covariance matrix of the ensemble

mean. Equation (A.10) is a Rayleigh quotient (R(	S ′)), and its stationary points can

be obtained by taking its gradient respect to 	S ′ and equate to zero. Since

∂(	S ′t 	S ′)

∂ 	S ′ = 2	S ′, (A.11)

∂(	S ′tCM
	S ′)

∂ 	S ′ = 2C ′
M

	S ′, (A.12)

we have that ∂R

∂ �S′ = 0 only if

C ′
M

	S ′ −
	S ′tC ′

M
	S ′

	S ′t 	S ′
	S ′ = 0. (A.13)

Equation (A.13) states that in order to maximize the Rayleigh quotient we need
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to find the largest eigenvalue of the system C ′
M

	S ′ = λ	S ′. Transforming back to the

original non-prewhitened space we get

C ′
M

	S ′ = λ	S ′ ⇔

F tCMF 	S ′ = λ	S ′ ⇔

CMF 	S ′ = λ(F t)−1 	S ′ ⇔

CM
	S = λ(F t)−1F−1	S = λ

CN

K
	S. (A.14)

Thus solving for the largest eigenvalue of the eigenproblem

CM
	S =

λ

K
CN

	S (A.15)

gives the direction 	S in phase space that defines the pattern which maximizes the S/N

ratio of equation (A.10). Along 	S the S/N ratio is
σ2

M

σ2
N

= λ
K

. In Venzke et al. [1999]

	S is called a “spatial filter” because it provides the optimal filter to discriminate

between the forced response and the internal atmospheric variability. In the original

derivation of the algorithm by Venzke et al. [1999], the technique was not posed as

the solution of an eigenvalue problem. It required the explicit construction of the

“pre-whitening” filter F previous to the finding of 	S. We followed this procedure in

section D of Chapter II. The construction of the matrix F poses some complications

because we have to decide the number of noise EOFs used to construct it (see also

Venzke et al. [1999]). Therefore, during the rest of our work we used (A.15) to find

the spatial filters 	S because it does not require of the intermediate step of finding F

and is more straightforward to use. Both procedures yield, however, same results.

The set of eigenvectors 	S is generally not orthogonal. Instead, the 	S are or-

thogonal with respect to CN , that is 	SiCN
	Sj = 0 if i �= j. This is equivalent to

say that 	y = CN
	S and 	S are biorthogonal. The vectors 	y are the physical patterns
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(besides a constant): applying an inverse pre-whitening on 	S ′ we get 	p = (F t)−1 	S ′ =

(F t)−1F−1	S = CN

K
	S. Or equivalently from equation (A.15) the physical patterns asso-

ciated to a particular filter 	S can be calculated as 	p = 1
λ
CM

	S. The physical patterns

are usually called S/N-optimals. The time series associated to the S/N-optimals are

calculated as pc = 	StXM .

If CN is non-singular then the generalized eigenvalue problem of equation (A.15)

can be reduced to KC−1
N CM

	S = λ	S, which is a regular eigenvalue problem. If CN is

singular the solution is to do a regularization by truncated principal components: set

to zero the eigenvalues not significantly different from zero and their inverses. Zeroing

these contributions to the inverse of CN amounts to replacing the ill-defined inverse

C−1
N by a Moore-Penrose pseudo-inverse (see Schneider and Griffies [1999]).

Once the S/N-optimals are calculated, there are two ways to proceed. The first

straightforward way is considering the leading S/N-optimals as the forced signals.

A second way, which may be physically more sound, consists of two steps. First,

construct a total forced signal by summing up all the optimals that have a S/N-ratio

larger than unity. (Note that by construction the mean S/N-ratio of individual noise

realizations in ensemble members -the noise-to-noise ratio- is unity. However, due to

limited sampling this is not true for individual noise realizations and an interval of

confidence around unity can be constructed for each optimal given by the dispersion

of the noise-to-noise ratios. The signal was constructed using those optimals that

have S/N-ratios lying outside this interval.) Second, the dominant forced patterns

are calculated as the EOFs of the total signal variance. This method is preferred

because the optimization method does not assure a priory that the first optimal is

the pattern that explains the most signal variance. Theoretically, it may happen that

the first optimal is a pattern that seldom occurs (then a small signal variance), but

it is a pattern that is nearly orthogonal to the noise, thus giving a large S/N-ratio.
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By constructing the total signal variance and then performing an EOF analysis, we

assure that the pattern is the one that explains most of the signal variance. We used

both ways to find the forced responses. Our results indicate that the first EOF of the

total signal and the first optimal are in fact very similar in both spatial and temporal

structures for the data sets we have considered.

Since the constructed signal is by definition common to all ensemble members,

it is possible to construct the noise part of the model evolution by subtracting the

signal from each ensemble member. The spatial structure of the dominant internal

mode can then be found by performing an EOF analysis on the noise variance.

Moreover, by comparing the relative strength of the signal (σ2
s) and of the noise

(σ2
n) variance, one can also obtain an estimate of potential predictability. To do so,

we define a potential predictability measure PP as the ratio between signal variance

and total variance, i.e., PP = σ2
s/(σ

2
s + σ2

n) = σ2
s/σ

2
t , where σ2

t is the total variance.

It is important to realize that the word “potential” means that the model is assumed

perfect and that the surface state of the ocean is known in advance. Thus, potential

predictability gives an upper limit of the predictability of the atmospheric response

to changes in SST.

In sum, the signal-to-noise optimization procedure is a powerful tool that allows

the separate study of the forced response and the noise, under the assumption of

linearity, in a systematic way.

ii. Analysis of Variance

The Analysis of Variance (ANOVA) provides a second method to estimate po-

tential predictability. Here we only give a brief summary of ANOVA. A detailed

description of the technique can be found in Rowell [1998] and von Storch and Zwiers

[1999].
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Consider a K-member ensemble of AMIP-type simulations as in the previous

section. The ANOVA model assumes that the simulated evolution of an atmospheric

variable at each grid point can be approximated as the sum of two independent

components:

xnk = µn + εnk, k = 1...K, n = 1...N. (A.16)

where µn is the component due to ocean forcing and εnk is the component due to

internal variability. This is called a 1-way ANOVA model. The assumptions are: (1)

εnk are independent and identically distributed normal random variables with zero

mean and variance σ2
N , and (2) µn are independent and identically distributed normal

random variables with zero mean and variance σ2
F .

The variance of the internal variability can be estimated by computing the devi-

ations from the ensemble mean

σ̂2
N =

1

N(K − 1)

N∑
n=1

K∑
k=1

(xnk − x̄n)2, (A.17)

where

x̄n =
1

K

K∑
k=1

xnk, (A.18)

is the ensemble mean. The variance of the ensemble mean is in turn estimated as

σ̂2
EM =

1

N − 1

N∑
n=1

(x̄n − x)2, (A.19)

where

x =
1

NK

K∑
k=1

N∑
n=1

xnk, (A.20)

is the mean over all the data. Now, as in the previous chapter we can write

σ2
EM = σ2

F +
σ2

N

K
, (A.21)

which states that the variance of the ensemble mean is a biased estimate of the
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signal variance. The variance due to the ocean forcing can thus be estimated as

σ̂2
F = σ̂2

EM − σ̂2
N

K
, while the total variance is estimated as σ̂2

T = σ̂2
F + σ̂2

N . The potential

predictability can then be computed as the ratio PPA =
σ̂2

F

σ̂2
T
. Note that if SSTs are

assumed to be known in advance this ratio is analogous to the predictive power.

Next, we show how to compute the statistical significance of the potential pre-

dictability. A test to measure if there are significant SST effects can be posed as

follows:

The hypothesis of no SST effects is H0 : σ2
F = 0.

The alternative hypothesis is Ha : σ2
F > 0.

Thus, from equation A.21 the F-ratio F =
σ̂2

EM

σ̂2
N/K

is a suitable statistics to test H0.

It can be shown that F follows an F-distribution with (N − 1, N(K − 1)) degrees of

freedom. Using the F-ratio we can rewrite PPA

PPA =
F − 1

F + (K − 1)
, (A.22)

and critical values of F can be used to assess the statistical significance of ANOVA’s

estimate of potential predictability.
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APPENDIX B

DERIVATION OF SST EQUATION

We follow Penland and Sardesmukh [1995] to derive equations (4.1)-(4.3). Let

Xa represent the state vector of the atmosphere. The evolution of Xa is given by

∂Xa

∂t
= f(Xa, T ), where f(Xa, T ) is a nonlinear function, and T represents the SST.

Linearizing the equation around the climatology (X̄a, T̄ ), the equation for the anoma-

lies X′
a may be written

∂X′
a

∂t
=

∂f

∂X′
a

∣∣∣∣∣
X̄a

X′
a +

∂f

∂T

∣∣∣∣∣
T̄

T ′ + Na = LaX
′
a + LoT

′ + Na (B.1)

On the time scales of SST evolution the atmosphere adjusts quickly to SST

changes, therefore ∂X′
a

∂t
= 0, and the atmospheric variability can be divided into a

quasi-equilibrium response to SST changes, and a quasi-random part due to non-

linear processes (Na)

X′
a = −(L−1

a Lo)T
′ − L−1

a Na (B.2)

Now, the evolution equation for the SST is (neglecting the small diffusion term)

∂T

∂t
= −u

∂T

∂x
− v

∂T

∂y
− w

∂T

∂z
+ Q (B.3)

We assume that the net surface heat flux Q can be written as a linear function

of the air-sea temperature difference, that is, Q = Lq(Ta − T ), where Ta is the atmo-

spheric temperature. Then, using equation (B.2), the anomalous heat flux Q′ can be

expressed as the sum of a linear term depending on the SST alone, and a term that

is due to nonlinear processes that are approximated as white noise: Q′ = AT ′ + QN .

Note that matrix A depends not only on the local SST but also on winds that adjust

to SST gradients.
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We now look into the advective terms of the SST equation. The vertical deriva-

tive in equation (B.3) can be simplified as ∂T/∂z = (T − (TS +Γh))/H, where H is a

characteristic depth, h is the thermocline displacement, TS a characteristic tempera-

ture that would that would be upwelled from a thermocline undisturbed by dynamics

and Γ a positive constant [Neelin, 1991]. Linearizing the SST equation about the

climatology we get

∂T ′

∂t
= −ū

∂T ′

∂x
− v̄

∂T ′

∂y
− w̄

T ′

H
+ Q′ − u′∂T̄

∂x
− v′∂T̄

∂y
− w′∂T̄

∂z
+ w̄

Γh

H
+ No, (B.4)

where No are nonlinear terms. The first three terms on the right hand side of

equation (B.4) are of the form of a matrix B1 operating on the SST anomaly. Note

that matrix B1 involves spatial derivatives. If the anomalous currents and thermocline

depth evolve in response to the anomalous winds, then the remaining linear terms of

equation (B.4) can be written as a matrix operating on the winds. But the winds are

themselves a response to the SST (equation (B.2)). Thus, these terms can be written

as a matrix B2 operating on the SST. Then, equation (B.4) becomes analogous to

equation (4.1)-(4.3)

∂T ′

∂t
= AT ′ + B1T

′ + B2T
′ + ξ = AT ′ + BT ′ + ξ = ÂT ′ + ξ, (B.5)

where the nonlinear terms have been approximated as gaussian white noise ξ.

Equation (B.5) states that the evolution of SSTs is governed by a multivariate linear

Markov process. The matrix B = B1 + B2 parameterizes the effects of the advective

terms in the evolution of the SST anomaly. Matrix Â includes both thermodynamical

and dynamical ocean processes affecting the SST evolution.
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